Araştırma Makalesi
BibTex RIS Kaynak Göster

Tornalama Operasyonu Sırasında Oluşan Takım Ucu Yığıntı Kenarın Talaş Şekline Etkisinin İncelenmesi

Yıl 2024, , 2325 - 2333, 12.12.2024
https://doi.org/10.2339/politeknik.1432815

Öz

Takım aşınmasını arttırarak iş parçası yüzey kalitesinin ve takım ömrünün azalmasına sebep olan yığıntı kenar (ing. Buil-Up edge) oluşum mekanizmasının incelenmesi, mühendislik uygulamalarında kritik bir konudur. Bu mekanizmanın ayrıntılı bir şekilde ele alınması, takım ömrünün arttırılması, iş parçası yüzey pürüzlülüğünün düşürülmesi ve nihayetinde takım ve üretim maliyetlerinin düşürülmesi açısından büyük öneme sahiptir. Şu anki aşamada, bu oluşum mekanizması üzerindeki teorik, deneysel ve sayısal çalışmalar halen devam etmektedir. Bu araştırmada, kesme derinliği ve ilerleme hızı sabit tutularak kesme hızının yığıntı kenar oluşum mekanizması ve işleme sonrası oluşan talaş morfolojisine olan etkileri detaylı bir şekilde incelenmiştir. Gerçekleştirilen deneysel çalışmalar, kesme hızının yığıntı kenar oluşumunu ve oluşan talaş morfolojisini doğrudan etkilediğini göstermiştir. Bu etkinin boyutu, talaş morfolojisi ve yığıntı kenarın oluşumuyla ilgili detaylar, çekilen tarama elektron mikroskopu fotoğrafları üzerinden karşılaştırılarak analiz edilmiştir. Ayrıca, kesme sırasında tezgâh monitöründen okunan kesme kuvveti değeriyle kesme hızının ilişkisi de incelenmiştir. Bu araştırma, iş parçası işleme sürecindeki parametrelerin optimize edilmesiyle daha uzun takım ömrü, yüksek kaliteli iş parçası yüzeyleri ve düşük maliyetli üretim sağlama potansiyelini ortaya koymaktadır.

Kaynakça

  • [1] Çiftçi, İ., “AISI 304 Ostenitik paslanmaz çeliğin kaplanmış sementit karbür kesici takımla işlenmesi esnasında oluşan takım aşınması”, Teknoloji, 7(3): 489-495, (2004).
  • [2] Tomac, N., Tonnessen, K., Rasch, F.O., Mikac, T., “A study of factors that affect the build-up material formation”, Published in: E. Kuljanic (Ed.) Advanced Manufacturing Systems and Technology, CISM Courses and Lectyaman K., ures No. 486, Springer Wien, New York, (2005).
  • [3] Batzer, S.A., Haan, D.M., Rao, P.D., Olson W.W., Sutherland, J.W., “Chip morphology and hole surface texture in the drilling of cast aluminum alloys”, J. Mater. Proc. Technol., 79(1-3): 72-78, (1998).
  • [4] Kirschner, M., Michel, S., Berger, S., Biermann, D., Debus, J., Braukmann, D., Bayer, M., “In situ chip formation analyzes in micro single-lip and twist deep hole drilling”, Int. J. Adv. Manuf. Technol., 95: 2315-2324, (2018).
  • [5] Mohammad, U., Basak, A., Pramanik, A., Singh, S., Krolczyk, G.M., Prakash, C., “Evaluating hole quality in drilling of Al 6061 alloys”, Materials, 11: 2443-2456, (2018).
  • [6] Özdemir, U., Erten, M., “Talaşlı imalat sırasında kesici takımda meydana gelen hasar mekanizmaları ve takım hasarını azaltma yöntemleri”, Havacılık ve Uzay Teknolojileri Dergisi, 1(1): 37-50, (2003).
  • [7] Atlati, S., Haddag, B., Nouari, M., Moufki, A., “Effect of the local friction and contact natüre on the Built-Up Edge formation process in machining ductile metals”, Tribology International, 90: 217–227, (2015).
  • [8] Yaman K., Başaltın M., “Tornalama operasyonunda takım ucu yığıntı kenar oluşumunun deneysel olarak incelenmesi ve yığıntı kenarın talaş şekline etkisi”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology, in Cappadocia/TURKEY (IMSMATEC’19), June 21-23, (2019).
  • [9] Yesilkaya, K.K., Yaman, K., “Heat partition effect on cutting tool morphology in orthogonal metal cutting using finite element method”, Mechanika, 25(4):326-334, (2019).
  • [10] Nieslony, P., Grzesik, W., Laskowski, P., Zak, K., “Numerical 3D FEM simulation and experimental analysis of tribological aspects in turning inconel 718 alloy”, Journal of Machine Engineering, 15(1): 46-57, (2015).
  • [11] Parra, A.G, Alcon, M.A., Salguero, J., Batista, M., Marcos, M., “Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminum alloys”, Wear, 302: 1209-1218, (2013).
  • [12] Desaigues, J.E., Lescalier, C., Arzur, A.B., Dudzinski, D., Bomont, O., “Experimental study of Built-Up Layer formation during machining of high strength free-cutting steel”, J. Mater. Proc. Technol., 236: 204-215, (2016).
  • [13] Davoudinejad, A., Tosello, G., Annoni, M., “Influence of the worn tool affected by Built-Up Edge (BUE) on micro end-milling process performance: A 3D Finite Element Modeling investigation”, Int. J. Precision Eng. Manuf., 18(10): 1321-1332, (2017).
  • [14] Oliaei, S.N.B., Karpat, Y., “Built-up edge effects on process outputs of titanium alloy micro-milling”, Precision Engineering, 49: 305-315, (2017).
  • [15] Fang, N., Srinivasa, P., Mosquea, S., “A comparative study of sharp and round-edge tools in machining with built-up edge formation: cutting forces, cutting vibrations, and neural network modeling”, Int. J. Adv. Manuf. Technol., 53: 899-910, (2011).
  • [16] Childs, T.H.C., “Ductile shear failure damage modelling and predicting built-up edge in steel machining”, J. Mater. Proc. Technol., 213: 1954-1969, (2013).
  • [17] Sun, S., Brandt, M., Palanisamy, S., Dargush, M.S., “Effect of cryogenic compressed air on the evolution of cutting forceand tool wear during machining of Ti–6Al–4V alloy”, J. Mater. Proc. Technol., 221: 243-254, (2015).
  • [18] Wang, Z., Kovvuri, V., Araujo, A., Bacci, M., Hung, W.N.P., Bukkapatnam, S.T.S., “Built-up-edge effects on surface deterioration in micromilling processes”, J. Manuf. Processes, 24: 321-327, (2016).
  • [19] Yaman K., Özcan M., Tekiner Z., “Determination of the spinning parameters of AISI 304L stainless steel by using finite element method”, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1): 299-311, (2018).
  • [20] Yaman K., Bıçakçı N., Özgedik A., “Investigation of the drill length effect on hole tolerances”, Journal of Polytechnic, 20(4): 765-775, (2020).
  • [21] Song X., Takahashi Y., He W., Ihara T., “Study on the protective effect of built-up layer in dry cutting of stainless steel SUS304”, Precision Engineering, 65: 138-148, (2020).
  • [22] Mozammil S., Koshta E., Jha P.K., Swain P.K., “Investigation on experimental machinability & 3D finite element turning simulations of Al–4.5%Cu/TiB2/3p composite”, Trans Indian Inst Met., 76(1): 225–238, (2023).
  • [23] Cook N.H., Jhaveri P., Nayak N., “The mechanism of chip curl and its importance in metal cutting”, Journal of Engineering for Industry, 85(4): 374-380, (1963).
  • [24] Nakayama K., “A study on chip-breaker”, Bulletin of JSME, 5(17): 142-150, (1962).
  • [25] Worthington B., Redford A.H., “Chip curl and the action of the groove type chip former”, Int. J. Mach. Tool Des. Res., 13: 257-270, (1973).
  • [26] Okushima K., Minato K., “On the behavior of chip in steel cutting”, Bulletin of JSME, 2(5): 58-64, (1959).
  • [27] Nobel C., Hofmann U., Klocke F., Veselovac D., “Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys”, Int J Adv Manuf Technol, 84: 1127–1140, (2016).
  • [28] Ahmed Y.S., Paiva J.M., Veldhius S.C., “Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant”, The International Journal of Advanced Manufacturing Technology, 102: 1671–1688, (2019).
  • [29] Xu. D., Feng P., Li W., Ma Y., Liu B., “Research on chip formation parameters of aluminum alloy 6061-T6 based on high-speed orthogonal cutting model”, Int J Adv Manuf Technol., 72: 955–962, (2014).
  • [30] Rao A.S., “Effect of nose radius on the chip morphology, cutting force and tool wear during dry turning of Inconel 718”, Tribology - Materials, Surfaces & Interfaces, 17(1): 62-71, (2023).
  • [31] Dash L., Padhan S., Das S.R., “Experimental investigations on surface integrity and chip morphology in hard tuning of AISI D3 steel under sustainable nanofluid‑based minimum quantity lubrication”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(500): 1-25, (2020).
  • [32] Reis L.L.G., Junior W.M.S., Machado A.R., “Effect of cutting speed and cutting fluid on the BUE geometry of a SAE 12L14 free machining steel”, J. of the Braz. Soc. of Mech. Sci. & Eng., 29(2): 196-201, (2007).
  • [33] Fang N., “Kinematic characterization of chip lateral-curl—the third pattern of chip curl in machining”, Journal of Manufacturing Science and Engineering, 124: 667-675, (2002).
  • [34] Devotta A., Beno T., Löf R. Espes E., “Quantitative characterization of chip morphology using computed tomography in orthogonal turning process”, Procedia CIRP, 33: 299 – 304, (2015).
  • [35] Ulaş H.B., “AISI D2 ve AISI D3 soğuk iş takım çeliklerinin delinmesinde kesme parametrelerinin kesme kuvvetleri üzerindeki etkisinin incelenmesi”, Politeknik Dergisi, 21(1): 251-256, (2018).

Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation

Yıl 2024, , 2325 - 2333, 12.12.2024
https://doi.org/10.2339/politeknik.1432815

Öz

Investigating the mechanism of Built-Up Edge (BUE) formation, which increases tool wear and leads to a decrease in surface quality and tool life, is a critical aspect in engineering applications. A detailed examination of this mechanism holds great importance for extending tool life, reducing workpiece surface roughness, and ultimately lowering tool and production costs. Currently, theoretical, experimental, and numerical studies on this formation mechanism are still ongoing. In this research, the effects of cutting speed on the BUE formation mechanism and the resulting chip morphology were examined in detail, while keeping the cutting depth and feed rate constant. Experimental studies have shown that cutting speed directly influences the formation of BUE and the resulting chip morphology. The extent of this effect, along with details related to chip morphology and BUE formation, was analyzed by comparing scanning electron microscope images. Additionally, the relationship between cutting force values read from the machine monitor during cutting and cutting speed was also investigated. This research highlights the potential to achieve a longer tool life, high-quality workpiece surfaces, and cost-effective production through the optimization of parameters in the workpiece machining process

Kaynakça

  • [1] Çiftçi, İ., “AISI 304 Ostenitik paslanmaz çeliğin kaplanmış sementit karbür kesici takımla işlenmesi esnasında oluşan takım aşınması”, Teknoloji, 7(3): 489-495, (2004).
  • [2] Tomac, N., Tonnessen, K., Rasch, F.O., Mikac, T., “A study of factors that affect the build-up material formation”, Published in: E. Kuljanic (Ed.) Advanced Manufacturing Systems and Technology, CISM Courses and Lectyaman K., ures No. 486, Springer Wien, New York, (2005).
  • [3] Batzer, S.A., Haan, D.M., Rao, P.D., Olson W.W., Sutherland, J.W., “Chip morphology and hole surface texture in the drilling of cast aluminum alloys”, J. Mater. Proc. Technol., 79(1-3): 72-78, (1998).
  • [4] Kirschner, M., Michel, S., Berger, S., Biermann, D., Debus, J., Braukmann, D., Bayer, M., “In situ chip formation analyzes in micro single-lip and twist deep hole drilling”, Int. J. Adv. Manuf. Technol., 95: 2315-2324, (2018).
  • [5] Mohammad, U., Basak, A., Pramanik, A., Singh, S., Krolczyk, G.M., Prakash, C., “Evaluating hole quality in drilling of Al 6061 alloys”, Materials, 11: 2443-2456, (2018).
  • [6] Özdemir, U., Erten, M., “Talaşlı imalat sırasında kesici takımda meydana gelen hasar mekanizmaları ve takım hasarını azaltma yöntemleri”, Havacılık ve Uzay Teknolojileri Dergisi, 1(1): 37-50, (2003).
  • [7] Atlati, S., Haddag, B., Nouari, M., Moufki, A., “Effect of the local friction and contact natüre on the Built-Up Edge formation process in machining ductile metals”, Tribology International, 90: 217–227, (2015).
  • [8] Yaman K., Başaltın M., “Tornalama operasyonunda takım ucu yığıntı kenar oluşumunun deneysel olarak incelenmesi ve yığıntı kenarın talaş şekline etkisi”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology, in Cappadocia/TURKEY (IMSMATEC’19), June 21-23, (2019).
  • [9] Yesilkaya, K.K., Yaman, K., “Heat partition effect on cutting tool morphology in orthogonal metal cutting using finite element method”, Mechanika, 25(4):326-334, (2019).
  • [10] Nieslony, P., Grzesik, W., Laskowski, P., Zak, K., “Numerical 3D FEM simulation and experimental analysis of tribological aspects in turning inconel 718 alloy”, Journal of Machine Engineering, 15(1): 46-57, (2015).
  • [11] Parra, A.G, Alcon, M.A., Salguero, J., Batista, M., Marcos, M., “Analysis of the evolution of the Built-Up Edge and Built-Up Layer formation mechanisms in the dry turning of aeronautical aluminum alloys”, Wear, 302: 1209-1218, (2013).
  • [12] Desaigues, J.E., Lescalier, C., Arzur, A.B., Dudzinski, D., Bomont, O., “Experimental study of Built-Up Layer formation during machining of high strength free-cutting steel”, J. Mater. Proc. Technol., 236: 204-215, (2016).
  • [13] Davoudinejad, A., Tosello, G., Annoni, M., “Influence of the worn tool affected by Built-Up Edge (BUE) on micro end-milling process performance: A 3D Finite Element Modeling investigation”, Int. J. Precision Eng. Manuf., 18(10): 1321-1332, (2017).
  • [14] Oliaei, S.N.B., Karpat, Y., “Built-up edge effects on process outputs of titanium alloy micro-milling”, Precision Engineering, 49: 305-315, (2017).
  • [15] Fang, N., Srinivasa, P., Mosquea, S., “A comparative study of sharp and round-edge tools in machining with built-up edge formation: cutting forces, cutting vibrations, and neural network modeling”, Int. J. Adv. Manuf. Technol., 53: 899-910, (2011).
  • [16] Childs, T.H.C., “Ductile shear failure damage modelling and predicting built-up edge in steel machining”, J. Mater. Proc. Technol., 213: 1954-1969, (2013).
  • [17] Sun, S., Brandt, M., Palanisamy, S., Dargush, M.S., “Effect of cryogenic compressed air on the evolution of cutting forceand tool wear during machining of Ti–6Al–4V alloy”, J. Mater. Proc. Technol., 221: 243-254, (2015).
  • [18] Wang, Z., Kovvuri, V., Araujo, A., Bacci, M., Hung, W.N.P., Bukkapatnam, S.T.S., “Built-up-edge effects on surface deterioration in micromilling processes”, J. Manuf. Processes, 24: 321-327, (2016).
  • [19] Yaman K., Özcan M., Tekiner Z., “Determination of the spinning parameters of AISI 304L stainless steel by using finite element method”, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1): 299-311, (2018).
  • [20] Yaman K., Bıçakçı N., Özgedik A., “Investigation of the drill length effect on hole tolerances”, Journal of Polytechnic, 20(4): 765-775, (2020).
  • [21] Song X., Takahashi Y., He W., Ihara T., “Study on the protective effect of built-up layer in dry cutting of stainless steel SUS304”, Precision Engineering, 65: 138-148, (2020).
  • [22] Mozammil S., Koshta E., Jha P.K., Swain P.K., “Investigation on experimental machinability & 3D finite element turning simulations of Al–4.5%Cu/TiB2/3p composite”, Trans Indian Inst Met., 76(1): 225–238, (2023).
  • [23] Cook N.H., Jhaveri P., Nayak N., “The mechanism of chip curl and its importance in metal cutting”, Journal of Engineering for Industry, 85(4): 374-380, (1963).
  • [24] Nakayama K., “A study on chip-breaker”, Bulletin of JSME, 5(17): 142-150, (1962).
  • [25] Worthington B., Redford A.H., “Chip curl and the action of the groove type chip former”, Int. J. Mach. Tool Des. Res., 13: 257-270, (1973).
  • [26] Okushima K., Minato K., “On the behavior of chip in steel cutting”, Bulletin of JSME, 2(5): 58-64, (1959).
  • [27] Nobel C., Hofmann U., Klocke F., Veselovac D., “Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys”, Int J Adv Manuf Technol, 84: 1127–1140, (2016).
  • [28] Ahmed Y.S., Paiva J.M., Veldhius S.C., “Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant”, The International Journal of Advanced Manufacturing Technology, 102: 1671–1688, (2019).
  • [29] Xu. D., Feng P., Li W., Ma Y., Liu B., “Research on chip formation parameters of aluminum alloy 6061-T6 based on high-speed orthogonal cutting model”, Int J Adv Manuf Technol., 72: 955–962, (2014).
  • [30] Rao A.S., “Effect of nose radius on the chip morphology, cutting force and tool wear during dry turning of Inconel 718”, Tribology - Materials, Surfaces & Interfaces, 17(1): 62-71, (2023).
  • [31] Dash L., Padhan S., Das S.R., “Experimental investigations on surface integrity and chip morphology in hard tuning of AISI D3 steel under sustainable nanofluid‑based minimum quantity lubrication”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(500): 1-25, (2020).
  • [32] Reis L.L.G., Junior W.M.S., Machado A.R., “Effect of cutting speed and cutting fluid on the BUE geometry of a SAE 12L14 free machining steel”, J. of the Braz. Soc. of Mech. Sci. & Eng., 29(2): 196-201, (2007).
  • [33] Fang N., “Kinematic characterization of chip lateral-curl—the third pattern of chip curl in machining”, Journal of Manufacturing Science and Engineering, 124: 667-675, (2002).
  • [34] Devotta A., Beno T., Löf R. Espes E., “Quantitative characterization of chip morphology using computed tomography in orthogonal turning process”, Procedia CIRP, 33: 299 – 304, (2015).
  • [35] Ulaş H.B., “AISI D2 ve AISI D3 soğuk iş takım çeliklerinin delinmesinde kesme parametrelerinin kesme kuvvetleri üzerindeki etkisinin incelenmesi”, Politeknik Dergisi, 21(1): 251-256, (2018).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Süreçleri ve Teknolojileri, İmalat Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Kemal Yaman 0000-0003-3063-391X

Zafer Tekiner 0000-0003-1400-614X

Erken Görünüm Tarihi 1 Nisan 2024
Yayımlanma Tarihi 12 Aralık 2024
Gönderilme Tarihi 6 Şubat 2024
Kabul Tarihi 8 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yaman, K., & Tekiner, Z. (2024). Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation. Politeknik Dergisi, 27(6), 2325-2333. https://doi.org/10.2339/politeknik.1432815
AMA Yaman K, Tekiner Z. Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation. Politeknik Dergisi. Aralık 2024;27(6):2325-2333. doi:10.2339/politeknik.1432815
Chicago Yaman, Kemal, ve Zafer Tekiner. “Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation”. Politeknik Dergisi 27, sy. 6 (Aralık 2024): 2325-33. https://doi.org/10.2339/politeknik.1432815.
EndNote Yaman K, Tekiner Z (01 Aralık 2024) Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation. Politeknik Dergisi 27 6 2325–2333.
IEEE K. Yaman ve Z. Tekiner, “Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation”, Politeknik Dergisi, c. 27, sy. 6, ss. 2325–2333, 2024, doi: 10.2339/politeknik.1432815.
ISNAD Yaman, Kemal - Tekiner, Zafer. “Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation”. Politeknik Dergisi 27/6 (Aralık 2024), 2325-2333. https://doi.org/10.2339/politeknik.1432815.
JAMA Yaman K, Tekiner Z. Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation. Politeknik Dergisi. 2024;27:2325–2333.
MLA Yaman, Kemal ve Zafer Tekiner. “Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation”. Politeknik Dergisi, c. 27, sy. 6, 2024, ss. 2325-33, doi:10.2339/politeknik.1432815.
Vancouver Yaman K, Tekiner Z. Investigatıon of the Effect of Built-Up Edge on Chip Morphology at the Cutting Edge During Turning Operation. Politeknik Dergisi. 2024;27(6):2325-33.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.