Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions

Yıl 2017, Cilt: 20 Sayı: 4, 899 - 905, 20.12.2017
https://doi.org/10.2339/politeknik.369076

Öz

This study aims to compare Particle Swarm
Optimization (PSO) and Differential Evolution (DE) methods for various input
parameters. Both optimization methods show high performance in optimization of
any physical system including simple and complex constraints and objectives.
Average and standard values of both methods were evaluated by utilizing 8
benchmark functions and a graphical representation and comparison of
corresponding methods was presented for 50x50 and
100x100 population sizes and dimensionalities. It is concluded that DE and PSO
show the best fitness value for Sum of Different Powers benchmark function for
both number of populations. Approach to the optimum is found to be
faster through the PSO method. Both methods are flexible to be used for simple
and complex engineering problems with high performances with ease of
programming.

Kaynakça

  • 1) Das S., Abraham A. and Konar A., “Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives”, Studies in Computational Intelligence, 116: 1-38, (2008). 2) Holland J.H., “Adaptation in natural and artificial systems”, University of Michigan Press, Ann Arbor, (1975). 3) Kennedy J.and Elbehart R, “Particle swarm optimization” in proceedings of IEEE International Conference on Neural Networks, 1942-1948, (1995). 4) Storn R.,and Price K., “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces”, Journal of Global Optimization, 11(4): 341-359, (1997). 5) Ozcan H., Ozdemir K. and Ciloglu H., “Optimum cost of an air cooling system by using differential evolution and particle swarm algorithms”,.Energy and Buildings, 65:93-100, (2013). 6) Zhang F., Deb C., Lee S.E., Yang J. and Shah K.W., “Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique”, Energy and Buildings, 126: 94-103, (2016). 7) Dezelak K., Bracinik P., Höger M. and Otcenasova A., “Comparison between the particle swarm optimisation and differential evolution approaches for the optimal proportional–integral controllers design during photovoltaic power plants modelling”, IET Renewable Power Generation,10(4): 522-530, (2016). 8) MATLAB Version 7.5.0, The Mathworks Inc., 2007. 9) Price K., Storn R.M. and Lampinen J.A., “Differential evolution: a practical approach to global optimization”. Springer, London, (2005). 10) Talbi E.G., “Metaheuristics: from design to implementation”, John Wiley & Sons, Newyork, (2009). 11) Kennedy J., Elbehart R., “Swarm intelligence”, Morgan Kaufmann, San Francisco, (2001). 12) Internet Source: http://www.cs.cmu.edu/afs/cs/project /jair/pub/ volume 24/ ortiz boyer 05a-html/node6.html, accessed on May 2016.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Hasan Özcan

Yayımlanma Tarihi 20 Aralık 2017
Gönderilme Tarihi 2 Ekim 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 20 Sayı: 4

Kaynak Göster

APA Özcan, H. (2017). Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions. Politeknik Dergisi, 20(4), 899-905. https://doi.org/10.2339/politeknik.369076
AMA Özcan H. Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions. Politeknik Dergisi. Aralık 2017;20(4):899-905. doi:10.2339/politeknik.369076
Chicago Özcan, Hasan. “Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions”. Politeknik Dergisi 20, sy. 4 (Aralık 2017): 899-905. https://doi.org/10.2339/politeknik.369076.
EndNote Özcan H (01 Aralık 2017) Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions. Politeknik Dergisi 20 4 899–905.
IEEE H. Özcan, “Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions”, Politeknik Dergisi, c. 20, sy. 4, ss. 899–905, 2017, doi: 10.2339/politeknik.369076.
ISNAD Özcan, Hasan. “Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions”. Politeknik Dergisi 20/4 (Aralık 2017), 899-905. https://doi.org/10.2339/politeknik.369076.
JAMA Özcan H. Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions. Politeknik Dergisi. 2017;20:899–905.
MLA Özcan, Hasan. “Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions”. Politeknik Dergisi, c. 20, sy. 4, 2017, ss. 899-05, doi:10.2339/politeknik.369076.
Vancouver Özcan H. Comparison Of Particle Swarm And Differential Evolution Optimization Algorithms Considering Various Benchmark Functions. Politeknik Dergisi. 2017;20(4):899-905.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.