Piezo Aktüator ile Tahrik Edilen Yüzer Mini Robot Tasarımı
Yıl 2023,
Cilt: 26 Sayı: 2, 519 - 527, 05.07.2023
Nida Nur Karagöz
,
Sinan Atıcı
,
Berk Faruk Yaman
,
Bünyamin Topacık
,
Selçuk Kizir
Öz
Geçmişten günümüze insanoğlu, yaşam kalitesini geliştirmek ve karşılaştığı sorunların üstesinden gelebilmek için doğadaki pek çok şeyi gözlemlemiş ve taklit etmiştir. Günümüzde, biyomimetik biliminin gelişimi robotik alanını da oldukça etkilemektedir. Bu çalışmada; piezo bimorf ile tahrik edilen kurbağa larvası hareketini taklit eden bir mini robotun en uygun tasarımına ulaşmak ve bu robotun optimum çalışma değerlerini tespit etmek amaçlanmıştır. Matematiksel analiz ve bilgisayar simülasyonları gerçekleştirilmiştir. Çalışma, bilgisayar görmesi yöntemi ve joystick sistem ile desteklenmiştir. Bunlarla beraber bu çalışmada, karşılaşılan problemlerden ve uygulanan alternatif yollardan da bahsedilmektedir.
Kaynakça
- [1] D. Tan, Y.-C. Wang, E. Kohtanen, and A. Erturk, “Trout-like multifunctional piezoelectric robotic fish and energy harvester”, Bioinspir. Biomim., 16(4): 046024, (2021).
- [2] T. Fukuda, A. Kawamoto and H. Matsuura, “Mechanism and Swimming Experiment of Micro Mobile Robot in Water”, 6, (1994).
- [3] T. Fukuda, H. Hosokai and I. Kikuchi, “Distributed type of actuators by shape memory alloy and its application to underwater mobile robotic mechanism”, içinde Proceedings., IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 1316-1321, (1990).
- [4] T. Honda, K. I. Arai and K. Ishiyama, “Micro swimming mechanisms propelled by external magnetic fields”, IEEE Trans. Magn., 32(5): 5085-5087, (1996).
- [5] Q. Zhang, S. Song and S. Song, “Study on magnetic field model of independent circular coils for wireless manipulation of microrobots”, IEEE International Conference on Information and Automation (ICIA), Macau SAR, China, 1137-1142, (2017).
- [6] S. Jeon, G. Jang, H. Choi and S. Park, “Magnetic Navigation System With Gradient and Uniform Saddle Coils for the Wireless Manipulation of Micro-Robots in Human Blood Vessels”, IEEE Trans. Magn., 46(6): 1943-1946, (2010).
- [7] J. Choi, H. Choi, K. Cha, J. Park and S. Park, “Two-dimensional locomotive permanent magnet using electromagnetic actuation system with two pairs stationary coils”, IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 1166-1171, (2009).
- [8] Y. Zhong, R. Du and P. W. Y. Chiu, “Tadpole endoscope: a wireless micro robot fish for examining the entire gastrointestinal (GI) tract,” HKIE Transactions, 22(2): 117–122, (2015).
- [9] H. Choi, “Three-dimensional swimming tadpole mini-robot using three-axis Helmholtz coils,” Int. J. Control Autom. Syst., 12(3): 662–669, (2014).
- [10] D.-H. Byun, J.-Y. Kim, S.-M. Baek, H.-C. Choi, J.-O. Park and S.-H. Park, “Swimming Microrobot Actuated by External Magnetic Field,” Transactions of the Korean Society of Mechanical Engineers A, 33(11): 1300–1305, (2009).
- [11] Tao Mei, Yong Chen, Guoqiang Fu and Deyi Kong, “Wireless drive and control of a swimming microrobot”, IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2: 1131-1136, (2002).
- [12] Yi Zhang, Qimin Wang, Peiqiang Zhang, Xiaohua Wang and Tao Mei, “Dynamic analysis and experiment of a 3mm swimming microrobot”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 2: 1746-1750, (2004).
- [13] Shuxiang Guo, J. Sawamoto and Qingxue Pan, “A novel type of microrobot for biomedical application”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., Canada, 1047-1052, (2005).
- [14] S. H. Kim, K. S. Shin, S. Hashi and K. Ishiyama, “A Pushing Force Mechanism of Magnetic Spiral-type Machine for Wireless Medical-Robots in Therapy and Diagnosis”, IEEE Trans. Magn., 49(7): 4, (2013).
- [15] S. Jeong, H. Choi, K. Cha, J. Li, J. Park and S. Park, “Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field”, Sens. Actuators Phys., 171(2): 429-435, (2011).
- [16] A. Chiba, “Magnetic Actuator for a Capsule Endoscope Navigation System”, J. Magn., 12(2): 89-92, (2007).
- [17] Shuxiang Guo, T. Fukuda and K. Asaka, “Fish-like underwater microrobot with 3 DOF”, IEEE International Conference on Robotics and Automation, Washington, DC, USA, 1: 738-743, (2002).
- [18] S. Guo, Y. Ge, L. Li and S. Liu, “Underwater Swimming Micro Robot Using IPMC Actuator”, (2006).
- [19] Shuxiang Guo, Y. Hasegaw, T. Fukuda and K. Asaka, “Fish-like underwater microrobot with multi DOF”, International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 63–68, (2001).
- [20] S. Guo, Seiji Hata, Koujirou Tanaka and Kouhei Ishii, “Development of a ball type of underwater robot”, International Conference on Mechatronics and Automation, Changchun, China, 2077-2082, (2009).
- [21] V. Balanagajyothi, “Development of swimming robot with a helical coil propeller and its control algorithm”, Ocean Electronics (SYMPOL), Kochi, India, 167-174, (2013).
- [22] D. Korkmaz, G. Ozmen Koca, G. Li, C. Bal, M. Ay and Z. H. Akpolat, “Locomotion control of a biomimetic robotic fish based on closed loop sensory feedback CPG model”, Journal of Marine Engineering & Technology, 20(2): 125-137, (2021).
- [23] T. Fukuda, H. Hosokai, H. Ohyama, H. Hashimoto and F. Arai, “Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables”, Micro Electro Mechanical Systems, Nara, Japan, 210-215, (1991).
- [24] M. de Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, “A database to enable discovery and design of piezoelectric materials”, Sci Data, 2(1): 150053, (2015).
- [25] V. Piefort, "Finite Element Modelling of Piezoelectric Active Structures", 154, (2001).
- [26] A. Erturk, “Macro-Fiber Composite Actuated Piezoelectric Robotic Fish”, Robot Fish, Springer Berlin Heidelberg, Berlin, 255-283, (2015).
- [27] J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope”, Journal of Applied Physics, 84(1): 64-76, (1998).
- [28] J. W. M. Chon, P. Mulvaney and J. E. Sader, “Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids”, Journal of Applied Physics, 87(8): 3978-3988, (2000).
- [29] M. Aureli ve M. Porfiri, “Low frequency and large amplitude oscillations of cantilevers in viscous fluids”, Appl. Phys. Lett., 96(16): 164102, (2010).
- [30] F. Berlinger, M. Saadat, H. Haj-Hariri, G. V. Lauder and R. Nagpal, “Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot”, Bioinspir. Biomim.,16(2): 026018, (2021).
- [31] M. Ay, G. Özmen Koca, S. Yetkin, C. Bal and Z. H. Akpolat, “Farklı kuyruk modellerine sahip bir robot balığın fsı analizi”, NWSA, 12(1): 78-89, (2017).
- [32] R. Verma, “Detecting and Tracking a Moving Object in a Dynamic Background using Color-Based Optical Flow”, (2017).
- [33] X. Dai and F. Qin, Rapid BeagleBoard prototyping with MATLAB and Simulink. Birmingham, UK: Packt Pub., (2013).
Floating Mini Robot Design Driven by Piezo Actuator
Yıl 2023,
Cilt: 26 Sayı: 2, 519 - 527, 05.07.2023
Nida Nur Karagöz
,
Sinan Atıcı
,
Berk Faruk Yaman
,
Bünyamin Topacık
,
Selçuk Kizir
Öz
From past to present, human beings have observed and imitated many things in nature to improve their quality of life and overcome the problems they face. Today, the development of biomimetic science also greatly influences robotics. In this study, it is aimed to reach the most suitable design of a mini-robot that imitates the movement of tadpoles driven by piezo bimorph and to determine the optimum operating values of this robot. Mathematical analysis and computer simulations were carried out. The study was supported by the computer vision method and haptic system. In addition to these, the problems encountered and the alternative ways applied are also mentioned in this article.
Kaynakça
- [1] D. Tan, Y.-C. Wang, E. Kohtanen, and A. Erturk, “Trout-like multifunctional piezoelectric robotic fish and energy harvester”, Bioinspir. Biomim., 16(4): 046024, (2021).
- [2] T. Fukuda, A. Kawamoto and H. Matsuura, “Mechanism and Swimming Experiment of Micro Mobile Robot in Water”, 6, (1994).
- [3] T. Fukuda, H. Hosokai and I. Kikuchi, “Distributed type of actuators by shape memory alloy and its application to underwater mobile robotic mechanism”, içinde Proceedings., IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 1316-1321, (1990).
- [4] T. Honda, K. I. Arai and K. Ishiyama, “Micro swimming mechanisms propelled by external magnetic fields”, IEEE Trans. Magn., 32(5): 5085-5087, (1996).
- [5] Q. Zhang, S. Song and S. Song, “Study on magnetic field model of independent circular coils for wireless manipulation of microrobots”, IEEE International Conference on Information and Automation (ICIA), Macau SAR, China, 1137-1142, (2017).
- [6] S. Jeon, G. Jang, H. Choi and S. Park, “Magnetic Navigation System With Gradient and Uniform Saddle Coils for the Wireless Manipulation of Micro-Robots in Human Blood Vessels”, IEEE Trans. Magn., 46(6): 1943-1946, (2010).
- [7] J. Choi, H. Choi, K. Cha, J. Park and S. Park, “Two-dimensional locomotive permanent magnet using electromagnetic actuation system with two pairs stationary coils”, IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 1166-1171, (2009).
- [8] Y. Zhong, R. Du and P. W. Y. Chiu, “Tadpole endoscope: a wireless micro robot fish for examining the entire gastrointestinal (GI) tract,” HKIE Transactions, 22(2): 117–122, (2015).
- [9] H. Choi, “Three-dimensional swimming tadpole mini-robot using three-axis Helmholtz coils,” Int. J. Control Autom. Syst., 12(3): 662–669, (2014).
- [10] D.-H. Byun, J.-Y. Kim, S.-M. Baek, H.-C. Choi, J.-O. Park and S.-H. Park, “Swimming Microrobot Actuated by External Magnetic Field,” Transactions of the Korean Society of Mechanical Engineers A, 33(11): 1300–1305, (2009).
- [11] Tao Mei, Yong Chen, Guoqiang Fu and Deyi Kong, “Wireless drive and control of a swimming microrobot”, IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2: 1131-1136, (2002).
- [12] Yi Zhang, Qimin Wang, Peiqiang Zhang, Xiaohua Wang and Tao Mei, “Dynamic analysis and experiment of a 3mm swimming microrobot”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 2: 1746-1750, (2004).
- [13] Shuxiang Guo, J. Sawamoto and Qingxue Pan, “A novel type of microrobot for biomedical application”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., Canada, 1047-1052, (2005).
- [14] S. H. Kim, K. S. Shin, S. Hashi and K. Ishiyama, “A Pushing Force Mechanism of Magnetic Spiral-type Machine for Wireless Medical-Robots in Therapy and Diagnosis”, IEEE Trans. Magn., 49(7): 4, (2013).
- [15] S. Jeong, H. Choi, K. Cha, J. Li, J. Park and S. Park, “Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field”, Sens. Actuators Phys., 171(2): 429-435, (2011).
- [16] A. Chiba, “Magnetic Actuator for a Capsule Endoscope Navigation System”, J. Magn., 12(2): 89-92, (2007).
- [17] Shuxiang Guo, T. Fukuda and K. Asaka, “Fish-like underwater microrobot with 3 DOF”, IEEE International Conference on Robotics and Automation, Washington, DC, USA, 1: 738-743, (2002).
- [18] S. Guo, Y. Ge, L. Li and S. Liu, “Underwater Swimming Micro Robot Using IPMC Actuator”, (2006).
- [19] Shuxiang Guo, Y. Hasegaw, T. Fukuda and K. Asaka, “Fish-like underwater microrobot with multi DOF”, International Symposium on Micromechatronics and Human Science, Nagoya, Japan, 63–68, (2001).
- [20] S. Guo, Seiji Hata, Koujirou Tanaka and Kouhei Ishii, “Development of a ball type of underwater robot”, International Conference on Mechatronics and Automation, Changchun, China, 2077-2082, (2009).
- [21] V. Balanagajyothi, “Development of swimming robot with a helical coil propeller and its control algorithm”, Ocean Electronics (SYMPOL), Kochi, India, 167-174, (2013).
- [22] D. Korkmaz, G. Ozmen Koca, G. Li, C. Bal, M. Ay and Z. H. Akpolat, “Locomotion control of a biomimetic robotic fish based on closed loop sensory feedback CPG model”, Journal of Marine Engineering & Technology, 20(2): 125-137, (2021).
- [23] T. Fukuda, H. Hosokai, H. Ohyama, H. Hashimoto and F. Arai, “Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables”, Micro Electro Mechanical Systems, Nara, Japan, 210-215, (1991).
- [24] M. de Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, “A database to enable discovery and design of piezoelectric materials”, Sci Data, 2(1): 150053, (2015).
- [25] V. Piefort, "Finite Element Modelling of Piezoelectric Active Structures", 154, (2001).
- [26] A. Erturk, “Macro-Fiber Composite Actuated Piezoelectric Robotic Fish”, Robot Fish, Springer Berlin Heidelberg, Berlin, 255-283, (2015).
- [27] J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope”, Journal of Applied Physics, 84(1): 64-76, (1998).
- [28] J. W. M. Chon, P. Mulvaney and J. E. Sader, “Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids”, Journal of Applied Physics, 87(8): 3978-3988, (2000).
- [29] M. Aureli ve M. Porfiri, “Low frequency and large amplitude oscillations of cantilevers in viscous fluids”, Appl. Phys. Lett., 96(16): 164102, (2010).
- [30] F. Berlinger, M. Saadat, H. Haj-Hariri, G. V. Lauder and R. Nagpal, “Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot”, Bioinspir. Biomim.,16(2): 026018, (2021).
- [31] M. Ay, G. Özmen Koca, S. Yetkin, C. Bal and Z. H. Akpolat, “Farklı kuyruk modellerine sahip bir robot balığın fsı analizi”, NWSA, 12(1): 78-89, (2017).
- [32] R. Verma, “Detecting and Tracking a Moving Object in a Dynamic Background using Color-Based Optical Flow”, (2017).
- [33] X. Dai and F. Qin, Rapid BeagleBoard prototyping with MATLAB and Simulink. Birmingham, UK: Packt Pub., (2013).