Araştırma Makalesi
BibTex RIS Kaynak Göster

Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi

Yıl 2022, Cilt: 3 Sayı: 1, 1 - 9, 31.03.2022

Öz

Selülozik bazlı doğal malzemeler uzun yıllardan beri plastiklerde güçlendirilme malzemesi olarak yaygın bir biçimde kullanılmaktadırlar.
Bu malzemelerin kullanılma nedenleri arasında maliyetlerinin düşük olması, yüksek fiziksel ve mekanik dirençe sahip olmaları sayılabilir.
Öğütülmüş fındık kabuğu plastik kompozitlerde dolgu malzemesi olarak da kullanılmaktadır. Türkiye’de fındık büyük ölçüde üretilmekte
ve dünyada ilk sırada yer almaktadır ancak kabukları genellikle evlerde yakılarak ısınma amaçlı kullanılmaktadır.
Bu çalışmada, fındık kabuğu tozu oranının ve 100 oC’de ısıl yaşlandırma süresinin (0, 15 ve 30 gün) yüksek yoğunluklu polietilen
kompozitinin mekanik özelliklerine etkileri incelenmiştir. İlk olarak fındık kabukları halkalı öğürücüde öğütülmüştür. Ağırlıkça %5, 10, 15
ve 20 oranlarında fındık kabuğu tozu yüksek yoğunluklu polietilene eklenerek çift vidalı ekstrüzyon makinesinde karıştırıldı. Daha sonra
elde edilen kompozitten enjeksiyon makinesinde çekme, Izod darbe, sertlik ve yoğunluk test numunelere basılarak testler gerçekleştirildi.
Yapılan testler sonucunda yüksek yoğunluklu polietilene fındık kabuğu tozunun ilavesiyle elastiklik modülü, akma mukavemeti, çekme
mukavemeti, % uzama değeri, yoğunluk, sertlik ve Izod darbe dayanımı değerlerinin azaldığı görüldü. Ayrıca yüksek yoğunluklu polietilen/
fındık kabuğu tozu polimer kompozitlerinin mekanik özellikleri (% uzama hariç), ısıl yaşlandırma süresinin (15 ve 30 gün) artmasıyla
arttığı görüldü.

Destekleyen Kurum

Marmara Üniversitesi Bilimsel Araştırma Projeleri Kordinasyon Birimi

Proje Numarası

FEN-C-YLP-100719-0252

Kaynakça

  • [1] Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., and Rowan, S.J., (2010), Review: Current international research into cellulose nanofibres and nanocomposites J. Mat. Sci., 45(1), 1-33.
  • [2] Kızıltaş, A., Nazari, B., Gardner, D.J., and Bousfield, D.W. (2013). Polyamide 6-cellulose composites: Effect of cellulose composition on melt rheology and crystallization behavior, Polym. Eng. Sci, 54(4) 739-746.
  • [3] Peng, Y., Liu, R., Cao, J., and Chen, Y. (2014). Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose, Appl. Surf. Sci. 317, 385-392.
  • [4] Ifuku, S., and Yano, H. (2015). Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite, Int. J. Biol. Macromol, 74, 428-432.
  • [5] Zulkifli, N.I., Samat, N., Anuar, H., and Zainuddin, N. (2015). Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites, Mater. Des. 69, 114-123.
  • [6] Spoljaric, S., Genovese, A., and Shanks, R.A. (2009). State of the art manufacturing and engineering of nanocellulose: A review of available data and industrial applications, Compos. Part A-Appl. Sci. 40 (6-7), 791-799.
  • [7] Dönmez, C.A., Kalaycıoglu, H., Mengeloğlu, F., (2011). Tea mill waste fibers filled thermoplastic composites: the effects of plastic type and fiber loading, J. Reinf. Plast. Compos. 30(10), 833-844.
  • [8] Dong, C., Davies, I.J., (2012). Flexural properties of macadamia nutshell particle reinforced polyester composites, Compos. Part B-Eng. (43), 2751-2756.
  • [9] Sutivisedsak, N., Cheng, H.N., Burks, C.S., Johnson, J.A., Siegel, J.P., Civerolo, E.L., Biswas, A., (2012). Use of nutshells as fillers in polymer composites, J polymer Environ, 20:305-314.
  • [10] Candemir, M., Özcan, M., Günes, M., Deliktaş, E., (2011). Technical efficiency and total factor productivity growth in the hazelnut agricultural sales cooperatives unions in Turkey. Math. Comp. Appl., 16(1), 66-76.
  • [11] Copur, Y., Güler, C., Akgül, M., Taşçıoglu, C., (2007). Some chemical properties of hazelnut husk and its suitability for particleboard production, Build. Environ. 42 (7), 2568-2572.
  • [12] Idi, A., Mohammad, S.E., (2011). Bioethanol from second generation feedstock (lignocellulose biomass), Interdiscip. J. Contemp. Res. Bus. 3(8), 919-935.
  • [13] Aziz, S.H., Ansell, M.P., (2004). Green composites, Polymer composites and the environment, woodhead pub. Cambridge, UK, pp 154-180.
  • [14] Raj RG., Kokta BV, Nizio JD (1992). Studies on mechanical properties of polyethylene–organic fiber composites. I. Nut shell flour, J Appl poly sci. 45 (1):91.
  • [15] Yerleşen, U., Taşdemir, M., (2015). Effect of zinc oxide and zinc borate on mechanical properties of high density polyethylene, Romanian J. of Materials, 45 (3), 240-243.
  • [16] Taşdemir, M., (2021). Effects of thermal aging on physical and wear properties of high-density polyethylene/hazelnut shell polymer composite, Int. J. Adv. Eng. Pure Sci. 33(2): 329- 336.
  • [17] Akbaş, S., Güleç, T., Tufan, M., Taşcıoğlu, C., Peker, H., (2008). Fındık kabuklarının polipropilen kompozit üretiminde değerlendirilmesi, artvin Çoruh Üni. Orman Fakültesi dergisi, cilt:14, sayı:1, sayfa. 50-56.
  • [18] Mengenoğlu, F., Karakuş, K., (2008). Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites, Sensors 8(1), 500- 519.
  • [19] Korkmaz, B., Özhan, A., Peksanlı, A., Tepeyurt, G.N., Taşdemir, M., (2018). Investigation on phsical and mechanical properties of high density polyethylene/artichoke leaf powder polymer composites, International conferance on physical chemisry and functional materials, Fırat university, Elazıg- Turkey, pp:136-140, june 10-21
  • [20]Teke, Z., Sırtıkara, M., Şahin, K.A., Taşdemir, M., (2019). The investigation of the effects of carbonized and uncarbonized orange peel powder on the mechanical properties of polypropylene, The international conference on materials science, Mechanical and automotive engineering and technology, 21-23 Jun Kapadokya/Nevşehir/Turkey
  • [21] Ulutaş, E., Taşdemir, M., Koçak, E.D., (2019). Investigation of mechanical properties of recycled polypropylene/rice husk polymer composites, The international conference on materials science, Mechanical and automotive engineering and technology, 21-23 Jun Kapadokya/Nevşehir/Turkey
  • [22] Aka, A., Tekerek, A.Y., Güler, G., Taşdemir, M., (2019). High density polyethylene/uncarbonized and carbonized waste corn husk polymer composites: physical and wear behaviors 35th International conference of the polymer processing society (PPS-35) 26 – 30 May Radisson blu resort & Spa, Çeşme-İzmir/Turkey
  • [23] Taşdemir, M., (2019). Mechanical properties of polypropylene biocomposites with sea weeds, Nanomaterials science and engineering, vol 1, no. 1 pp. 22-29

Effect of Thermal Aging on the Mechanical Properties of High Density Polyethylene/Nut Shell Polymer Composite

Yıl 2022, Cilt: 3 Sayı: 1, 1 - 9, 31.03.2022

Öz

Cellulosic-based natural materials have been widely used as a reinforcement material in plastics for many years. Among the reasons for
using these materials are their low cost, high physical and mechanical resistance. Ground hazelnut shells are also used as filling material in
plastic composites. Hazelnuts are produced on a large scale in Turkey and are in the first place in the world, but their shells are generally
burned in homes and used for heating purposes.
In this study, the effects of additions of hazelnut shell powder content and thermal aging time (0, 15 and 30 days) on the mechanical
properties of polyethylene composites were investigated. Nutshell powder, in four different concentrations (5, 10, 15 and 20 wt %) were
added to HDPE to produce composites. The tensile, Izod impact, hardness, density tests were conducted on specimens produced by means
of injection molding method. It was observed that, increasing the hutshell powder content in HDPE, values for elasticity modulus, yield
strength, tensile strength at break, % elongation, density, hardness and Izod impact strength decreased. On the other hand, mechanical
properties (except % elongation) of HDPE/nutshell powder polymer composites increased as the thermal aging time increases from 0 days
to 30 days.

Proje Numarası

FEN-C-YLP-100719-0252

Kaynakça

  • [1] Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., and Rowan, S.J., (2010), Review: Current international research into cellulose nanofibres and nanocomposites J. Mat. Sci., 45(1), 1-33.
  • [2] Kızıltaş, A., Nazari, B., Gardner, D.J., and Bousfield, D.W. (2013). Polyamide 6-cellulose composites: Effect of cellulose composition on melt rheology and crystallization behavior, Polym. Eng. Sci, 54(4) 739-746.
  • [3] Peng, Y., Liu, R., Cao, J., and Chen, Y. (2014). Effects of UV weathering on surface properties of polypropylene composites reinforced with wood flour, lignin, and cellulose, Appl. Surf. Sci. 317, 385-392.
  • [4] Ifuku, S., and Yano, H. (2015). Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite, Int. J. Biol. Macromol, 74, 428-432.
  • [5] Zulkifli, N.I., Samat, N., Anuar, H., and Zainuddin, N. (2015). Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites, Mater. Des. 69, 114-123.
  • [6] Spoljaric, S., Genovese, A., and Shanks, R.A. (2009). State of the art manufacturing and engineering of nanocellulose: A review of available data and industrial applications, Compos. Part A-Appl. Sci. 40 (6-7), 791-799.
  • [7] Dönmez, C.A., Kalaycıoglu, H., Mengeloğlu, F., (2011). Tea mill waste fibers filled thermoplastic composites: the effects of plastic type and fiber loading, J. Reinf. Plast. Compos. 30(10), 833-844.
  • [8] Dong, C., Davies, I.J., (2012). Flexural properties of macadamia nutshell particle reinforced polyester composites, Compos. Part B-Eng. (43), 2751-2756.
  • [9] Sutivisedsak, N., Cheng, H.N., Burks, C.S., Johnson, J.A., Siegel, J.P., Civerolo, E.L., Biswas, A., (2012). Use of nutshells as fillers in polymer composites, J polymer Environ, 20:305-314.
  • [10] Candemir, M., Özcan, M., Günes, M., Deliktaş, E., (2011). Technical efficiency and total factor productivity growth in the hazelnut agricultural sales cooperatives unions in Turkey. Math. Comp. Appl., 16(1), 66-76.
  • [11] Copur, Y., Güler, C., Akgül, M., Taşçıoglu, C., (2007). Some chemical properties of hazelnut husk and its suitability for particleboard production, Build. Environ. 42 (7), 2568-2572.
  • [12] Idi, A., Mohammad, S.E., (2011). Bioethanol from second generation feedstock (lignocellulose biomass), Interdiscip. J. Contemp. Res. Bus. 3(8), 919-935.
  • [13] Aziz, S.H., Ansell, M.P., (2004). Green composites, Polymer composites and the environment, woodhead pub. Cambridge, UK, pp 154-180.
  • [14] Raj RG., Kokta BV, Nizio JD (1992). Studies on mechanical properties of polyethylene–organic fiber composites. I. Nut shell flour, J Appl poly sci. 45 (1):91.
  • [15] Yerleşen, U., Taşdemir, M., (2015). Effect of zinc oxide and zinc borate on mechanical properties of high density polyethylene, Romanian J. of Materials, 45 (3), 240-243.
  • [16] Taşdemir, M., (2021). Effects of thermal aging on physical and wear properties of high-density polyethylene/hazelnut shell polymer composite, Int. J. Adv. Eng. Pure Sci. 33(2): 329- 336.
  • [17] Akbaş, S., Güleç, T., Tufan, M., Taşcıoğlu, C., Peker, H., (2008). Fındık kabuklarının polipropilen kompozit üretiminde değerlendirilmesi, artvin Çoruh Üni. Orman Fakültesi dergisi, cilt:14, sayı:1, sayfa. 50-56.
  • [18] Mengenoğlu, F., Karakuş, K., (2008). Thermal degradation, mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites, Sensors 8(1), 500- 519.
  • [19] Korkmaz, B., Özhan, A., Peksanlı, A., Tepeyurt, G.N., Taşdemir, M., (2018). Investigation on phsical and mechanical properties of high density polyethylene/artichoke leaf powder polymer composites, International conferance on physical chemisry and functional materials, Fırat university, Elazıg- Turkey, pp:136-140, june 10-21
  • [20]Teke, Z., Sırtıkara, M., Şahin, K.A., Taşdemir, M., (2019). The investigation of the effects of carbonized and uncarbonized orange peel powder on the mechanical properties of polypropylene, The international conference on materials science, Mechanical and automotive engineering and technology, 21-23 Jun Kapadokya/Nevşehir/Turkey
  • [21] Ulutaş, E., Taşdemir, M., Koçak, E.D., (2019). Investigation of mechanical properties of recycled polypropylene/rice husk polymer composites, The international conference on materials science, Mechanical and automotive engineering and technology, 21-23 Jun Kapadokya/Nevşehir/Turkey
  • [22] Aka, A., Tekerek, A.Y., Güler, G., Taşdemir, M., (2019). High density polyethylene/uncarbonized and carbonized waste corn husk polymer composites: physical and wear behaviors 35th International conference of the polymer processing society (PPS-35) 26 – 30 May Radisson blu resort & Spa, Çeşme-İzmir/Turkey
  • [23] Taşdemir, M., (2019). Mechanical properties of polypropylene biocomposites with sea weeds, Nanomaterials science and engineering, vol 1, no. 1 pp. 22-29
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Original Research
Yazarlar

Münir Taşdemir Bu kişi benim

Proje Numarası FEN-C-YLP-100719-0252
Erken Görünüm Tarihi 24 Mart 2022
Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

APA Taşdemir, M. (2022). Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi. International Periodical of Recent Technologies in Applied Engineering, 3(1), 1-9.
AMA Taşdemir M. Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi. PORTA. Mart 2022;3(1):1-9.
Chicago Taşdemir, Münir. “Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi”. International Periodical of Recent Technologies in Applied Engineering 3, sy. 1 (Mart 2022): 1-9.
EndNote Taşdemir M (01 Mart 2022) Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi. International Periodical of Recent Technologies in Applied Engineering 3 1 1–9.
IEEE M. Taşdemir, “Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi”, PORTA, c. 3, sy. 1, ss. 1–9, 2022.
ISNAD Taşdemir, Münir. “Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi”. International Periodical of Recent Technologies in Applied Engineering 3/1 (Mart 2022), 1-9.
JAMA Taşdemir M. Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi. PORTA. 2022;3:1–9.
MLA Taşdemir, Münir. “Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi”. International Periodical of Recent Technologies in Applied Engineering, c. 3, sy. 1, 2022, ss. 1-9.
Vancouver Taşdemir M. Isıl Yaşlandırmanın Yüksek Yoğunluklu Polietilen/Fındık Kabuğu Polimer Kompozitinin Mekanik Özelliklerine Etkisi. PORTA. 2022;3(1):1-9.

International Periodical of Recent Technologies in Applied Engineering