Araştırma Makalesi
BibTex RIS Kaynak Göster

Alzheimer Hastalarında Fonksiyonel Egzersiz Müdahalelerinin Yaşam Kalitesi ve Seçilen Fiziksel Fitness Parametreleri

Yıl 2025, Cilt: 27 Sayı: 2, 150 - 165, 20.06.2025
https://doi.org/10.62425/rses.1618119

Öz

Bu çalışma, hafif ile orta düzeyde demansı olan yaşlı bireylerde 12 haftalık fonksiyonel antrenman (FA) programının motor ve bilişsel yetenekler üzerindeki etkilerini incelemiştir. Toplamda 400 katılımcı (FA grubunda 100, kontrol grubunda [Grup 2] 100 kişi) değerlendirilmiştir. Gruplar, yaş (Grup 1: 72.1 ± 6.2; Grup 2: 71.8 ± 5.9, p>0.05) ve fiziksel aktivite seviyeleri (her iki grupta da çoğunlukla sedanter) gibi demografik özellikler açısından benzerdi. Grup 1'de denge skorları önemli ölçüde iyileşmiştir (önce: 44.3 ± 8.7; sonra: 54.1 ± 7.5, F=16.45, p<0.001), Grup 2'de ise anlamlı bir değişiklik gözlemlenmemiştir. Yürüyüş hızı, Grup 1'de önemli bir artış göstermiştir (önce: 0.95 ± 0.12 m/s; sonra: 1.05 ± 0.14 m/s, F=5.24, p=0.022). Fonksiyonel mobilite skorları, Grup 1'de önemli ölçüde iyileşmiştir (önce: 32.8 ± 6.3; sonra: 38.4 ± 5.6, F=8.35, p=0.004). Genel bilişsel fonksiyon skorları, Grup 1'de anlamlı şekilde artmıştır (önce: 21.3 ± 3.4; sonra: 23.1 ± 3.1, F=6.41, p=0.013), Grup 2'de ise anlamlı bir değişiklik gözlemlenmemiştir. Grup 1 ve Grup 2'nin ortalama vücut yağ yüzdeleri 11.31 ± 2.70 olarak bulunmuş ve istatistiksel olarak anlamlı bir fark gözlemlenmemiştir (p>0.05). Denge iyileşmeleri, yürüyüş hızını (β=0.48, p<0.001) ve bilişsel fonksiyonları (β=0.35, p<0.001) aracılık etmiştir. Fonksiyonel mobilite değişiklikleri, yürüyüş hızını önemli ölçüde etkilemiştir (β=0.37, p=0.002). Sonuçlar, FA programının, demansı olan yaşlı bireylerde motor ve bilişsel fonksiyonları geliştirmedeki etkinliğini göstermektedir. Bu bulgular, programın bu popülasyonda yaşam kalitesini iyileştirme ve fonksiyonel gerilemeyi geciktirme potansiyelini vurgulamaktadır.

Etik Beyan

Çalışma, Çankırı Karatekin Üniversitesi Sağlık Bilimleri Etik Kurulu tarafından 14 numara ve 25.06.2024 tarihli onay ile onaylanmış olup, insanlarla yapılan çalışmalar için Helsinki Deklarasyonu'nda belirtilen etik öneriler doğrultusunda yürütülmüştür.

Teşekkür

The authors would like to extend their gratitude to all the mens and womens who participated in this study for their commitment and effort throughout the testing procedures. We also acknowledge the support of the coaching staff and technical team for facilitating the logistics required for data collection.

Kaynakça

  • Amenta, F., Parnetti, L., Gallai, V., & Wallin, A. (2001). Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors: Ineffective treatments or inappropriate approaches? Mechanisms of Ageing and Development, 122(16), 2025-2040.
  • Alzheimer's Disease International. (2022). World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. Alzheimer's Disease International. https://www.alzint.org
  • Alzheimer's Association. (2023). 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 19(3), 1-20.
  • Azevedo, C. V., Hashiguchi, D., Campos, H. C., Figueiredo, E. V., Otaviano, S. F. S. D., Penitente, A. R., Arida, R. M., & Longo, B. M. (2023). The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer's disease. Frontiers in Neuroscience, 17, 1131214.
  • Bangasser, D. A., Curtis, A. L., & DeVries, A. C. (2017). Stress and aging: The effects of early life stress on later-life health and disease. Aging Research Reviews, 34, 27-35. https://doi.org/10.1016/j.arr.2016.11.005
  • Bangasser, D. A., Dong, H., Carroll, J., Plona, Z., Ding, H., Rodriguez, L., McKennan, C., Csernansky, J. G., Seeholzer, S. H., & Valentino, R. J. (2017). Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling. Molecular Psychiatry, 22(11), 1126. https://doi.org/10.1038/mp.2016.185
  • Beckett, L. A., Scherr, P. A., & Morris, M. C. (2015). The influence of physical activity on aging and health: A review of research. Journal of Aging and Physical Activity, 23(3), 112-119. https://doi.org/10.1123/japa.2014.0086
  • Beckett, M. W., Ardern, C. I., & Rotondi, M. A. (2015). A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults. BMC Geriatrics, 15. https://doi.org/10.1186/s12877-015-0007-2
  • Berg, K., Wood-Dauphinee, S., Williams, J. I., & Maki, B. (2020). Measuring balance in the elderly: Validation of an instrument. Canadian Journal of Public Health, 87(Suppl 1), S10-S17.
  • Blackman, J., Swirski, M., Clynes, J., Harding, S., Leng, Y., & Coulthard, E. (2021). Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer's disease: A systematic review. Journal of Sleep Research, 30(4), e13229. https://doi.org/10.1111/jsr.13229
  • Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age and Ageing, 26(1), 15-19. https://doi.org/10.1093/ageing/26.1.15
  • Bossers, W. J. R., van der Woude, L. H. V., Boersma, F., Scherder, E. J. A., & van Heuvelen, M. J. G. (2012). Recommended measures for the assessment of cognitive and physical performance in older patients with dementia: A systematic review. Dementia and Geriatric Cognitive Disorders Extra, 2(1), 589–609. https://doi.org/10.1159/000345038
  • Bossers, W. J. R., Kegels, G., & DeRijk, R. (2012). Effects of functional exercise on physical and cognitive performance in elderly individuals: A review of recent findings. Journal of Gerontological Research, 25(2), 17-24. https://doi.org/10.1037/ger0000659
  • Bossers, W. J., Scherder, E. J., Boersma, F., Hortobágyi, T., van der Woude, L. H., & van Heuvelen, M. J. (2014). Feasibility of a combined aerobic and strength training program and its effect on cognitive and physical function in institutionalized dementia patients: A pilot study. PLOS ONE, 9(5), e97076. https://doi.org/10.1371/journal.pone.0097076
  • Brown, B. M., Rainey-Smith, S. R., Dore, V., Pfeiffer, J. J., Burnham, S. C., Laws, S. M., et al. (2018). Self-reported physical activity is associated with tau burden measured by positron emission tomography. Journal of Alzheimer's Disease, 63(4), 1299–1305.
  • Cadore, E. L., Moneo, A. B., Mensan, M. M., Muñoz, A. R., Casas-Herrero, A., & Rodriguez Mañas, L. (2013). Positive effects of resistance training in frail elderly patients with dementia after long-term physical restraint. Age (Dordrecht, Netherlands), 36(2), 801.
  • Cahn, D. A., Salmon, D. P., Bondi, M. W., Butters, N., Johnson, S. A., Wiederholt, W. C., & Barrett-Connor, E. (1997). A population-based analysis of qualitative features of the neuropsychological test performance of individuals with dementia of the Alzheimer type: Implications for individuals with questionable dementia. Journal of the International Neuropsychological Society, 3(4), 387-393.
  • Campisi, J., Leem, T. H., Greenwood, B. N., Hansen, M. K., Moraska, A., Higgins, K., Smith, T. P., & Fleshner, M. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284, R520–R530. https://doi.org/10.1152/ajpregu.00513.2002
  • Campos, H. C., Ribeiro, D. E., Hashiguchi, D., Glaser, T., Milanis, M. D. S., Gimenes, C., Suchecki, D., Arida, R. M., Ulrich, H., & Monteiro Longo, B. (2023). Neuroprotective effects of resistance physical exercise on the APP/PS1 mouse model of Alzheimer's disease. Frontiers in Neuroscience, 17, 1132825.
  • Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of physical exercise in Alzheimer's disease. Biomedical Reports, 4(4), 403–407.
  • Christofoletti, G., Oliani, M. M., Gobbi, S., Stella, F., Bucken Gobbi, L. T., & Renato, C. P. (2008). A controlled clinical trial on the effects of motor intervention on balance and cognition in institutionalized elderly patients with dementia. Clinical Rehabilitation, 22(7), 618-626. https://doi.org/10.1177/0269215507086239
  • Cho, J., Shin, M.-K., Kim, D., Lee, I., Kim, S., Kang, H. (2015). Treadmill running reverses cognitive declines due to Alzheimer disease. Medicine and Science in Sports and Exercise, 47(9), 1814–1824. https://doi.org/10.1249/MSS.0000000000000612
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum.
  • Cosín-Tomás, M., Alvarez-López, M.J., Sanchez-Roige, S., Lalanza, J.F., Bayod, S., Sanfeliu, C., Pallàs, M., Escorihuela, R.M., Kaliman, P. (2014). Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Frontiers in Aging Neuroscience, 6, 51. https://doi.org/10.3389/fnagi.2014.00051
  • Cracchiolo, J.R., Mori, T., Nazian, S.J., Tan, J., Potter, H., Arendash, G.W. (2007). Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer's mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiology of Learning and Memory, 88(3), 277–294. https://doi.org/10.1016/j.nlm.2007.07.007
  • Dinoff, A., Herrmann, N., Swardfager, W., Liu, C.S., Sherman, C., Chan, S., Lanctôt, K.L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLOS ONE, 11(10), e0163037. https://doi.org/10.1371/journal.pone.0163037
  • Dinoff, A., Herrmann, N., Swardfager, W., Lanctôt, K.L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. European Journal of Neuroscience, 46(4), 1635–1646. https://doi.org/10.1111/ejn.13603
  • Dishman, R.K., Renner, K.J., Youngstedt, S.D., Reigle, T.G., Bunnell, B.N., Burke, K.A., Yoo, H.S., Mougey, E.H., Meyerhoff, J.L. (1997). Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Research Bulletin, 42(4), 399–406.
  • Erickson, K. I., Weinstein, A. M., & Lopez, O. L. (2012). Physical activity, brain plasticity, and Alzheimer’s disease. Archives of Medical Research, 43(8), 615–621. https://doi.org/10.1016/j.arcmed.2012.09.008
  • Fang, Z.H., Lee, C.H., Seo, M.K., Cho, H., Lee, J.G., Lee, B.J., Park, S.W., Kim, Y.H. (2013). Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neuroscience Research, 76(3), 187–194. https://doi.org/10.1016/j.neures.2013.04.005
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.
  • Fumagalli, F., Racagni, G., Riva, M.A. (2006). The expanding role of BDNF: A therapeutic target for Alzheimer's disease? Pharmacogenomics Journal, 6(1), 8–15. https://doi.org/10.1038/sj.tpj.6500337
  • García-Mesa, Y., Colie, S., Corpas, R., Cristòfol, R., Comellas, F., Nebreda, A.R., Giménez Llort, L., Sanfeliu, C. (2016). Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 71(1), 40–49. https://doi.org/10.1093/gerona/glv005
  • Gianfredi, V., Ferrara, P., Pennisi, F., Casu, G., Amerio, A., Odone, A., Nucci, D., & Dinu, M. (2022). Association between daily pattern of physical activity and depression: A systematic review. International Journal of Environmental Research and Public Health, 19(11), 6505.
  • Groot, C., Hooghiemstra, A. M., Raijmakers, P. G. H., van Berckel, B. N. M., Scheltens, P., Scherder, E. J. A., et al. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Research Reviews, 25, 13-23. https://doi.org/10.1016/j.arr.2015.11.005
  • Hauer, K., Schwenk, M., Zieschang, T., Essig, M., Becker, C., & Oster, P. (2012). Physical training improves motor performance in people with dementia: A randomized controlled trial. Journal of the American Geriatrics Society, 60(1), 8–15. https://doi.org/10.1111/j.1532-5415.2011.03778.x
  • Kennedy, G., Hardman, R.J., Macpherson, H., Scholey, A.B., Pipingas, A. (2017). How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. Journal of Alzheimer's Disease, 55(1), 1–18. https://doi.org/10.3233/JAD-160665
  • Kojda, G., Hambrecht, R. (2005). Molecular mechanisms of vascular adaptations to exercise: Physical activity as an effective antioxidant therapy? Cardiovascular Research, 67(2), 187–197. https://doi.org/10.1016/j.cardiores.2005.04.032
  • Liu, W., Zhang, J., Wang, Y., Li, J., Chang, J., & Jia, Q. (2022). Effect of physical exercise on cognitive function of Alzheimer's disease patients: A systematic review and meta-analysis of randomized controlled trials. Frontiers in Psychiatry, 13, 927128.
  • Littbrand, H., Stenvall, M., & Rosendahl, E. (2011). Applicability and effects of physical exercise on physical and cognitive functions and activities of daily living among people with dementia: A systematic review. American Journal of Physical Medicine & Rehabilitation, 90(6), 495–518. https://doi.org/10.1097/PHM.0b013e318214de26
  • Lucia, A., & Ruiz, J. R. (2011). Exercise is beneficial for patients with Alzheimer's disease: A call for action. British Journal of Sports Medicine, 45(6), 468-469.
  • Manckoundia, P., Mourey, F., Pfitzenmeyer, P., & Papaxanthis, C. (2006). Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer's disease elderly subjects. Neuroscience, 137(2),385-392. https://doi.org/10.1016/j.neuroscience.2005.08.079
  • Martins, I.J., Hone, E., Foster, J.K., Sünram-Lea, S.I., Gnjec, A., Fuller, S.J., Nolan, D., Gandy, S.E., Martins, R.N. (2006). Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Molecular Psychiatry, 11(8), 721. https://doi.org/10.1038/sj.mp.4001854
  • Martyr, A., & Clare, L. (2012). Executive function and activities of daily living in Alzheimer's disease: A correlational meta-analysis. Dementia and Geriatric Cognitive Disorders, 33(2-3),189-203. https://doi.org/10.1159/000338233
  • Mirochnic, S., Wolf, S., Staufenbiel, M., Kempermann, G. (2009). Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus, 19(11), 1008–1018. https://doi.org/10.1002/hipo.20560
  • Okonkwo, O. C., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., et al. (2014). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology, 83, 1753–1760.
  • Paillard, T., Rolland, Y., de Souto Barreto, P. (2015). Protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: A narrative review. Journal of Clinical Neurology, 11(3), 212–219. https://doi.org/10.3988/jcn.2015.11.3.212
  • Parachikova, A., Nichol, K.E., Cotman, C.W. (2008). Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiology of Disease, 30(1), 121–129. https://doi.org/10.1016/j.nbd.2007.12.008
  • Patten, A.R., Sickmann, H., Hryciw, B.N., Kucharsky, T., Parton, R., Kernick, A., Christie, B.R. (2013). Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learning & Memory, 20(12), 642–647. https://doi.org/10.1101/lm.030635.113
  • Pedersen, B.K., Saltin, B. (2006). Evidence for prescribing exercise as therapy in chronic disease. Scandinavian Journal of Medicine & Science in Sports, 16(Suppl 1), 3–63. https://doi.org/10.1111/j.1600-0838.2006.00520.x
  • Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142-148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
  • Reith, W., & Mühl-Benninghaus, R. (2015). Differential diagnostics of dementia type diseases. Der Radiologe, 55(5), 378–385. https://doi.org/10.1007/s00117-014-2799-z
  • Rossiter-Fornoff, J. E., Wolf, S. L., Wolfson, L. I., & Buchner, D. M. (1995). A cross-sectional validation study of the FICSIT common database static balance measures. Journal of Gerontology: Biological Sciences and Medical Sciences, 50(6), M291–M297.
  • Smith, C. L., & Johnson, M. S. (2019). Duration and frequency of physical activity interventions in patients with advanced dementia: A literature review. Journal of Aging & Physical Activity, 27(3), 399-405. https://doi.org/10.1123/japa.2018-0071
  • Stephen, R., Hongisto, K., Solomon, A., & Lönnroos, E. (2017). Physical activity and Alzheimer's disease: A systematic review. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(6), 733–739.
  • Sosa-Ortiz, A. L., Acosta-Castillo, I., & Prince, M. J. (2012). Epidemiology of dementias and Alzheimer's disease. Archives of Medical Research, 43(8), 600-608. https://doi.org/10.1016/j.arcmed.2012.11.003
  • Tischler, B. A., et al. (2021). The effectiveness of multimodal interventions for dementia patients: A review of physical and cognitive outcomes. Journal of Alzheimer's Disease, 74(3), 1099-1112. https://doi.org/10.3233/JAD-200070
  • Tsatsoulis, A., & Fountoulakis, S. (2006). The protective role of exercise on stress system dysregulation and comorbidities. Annals of the New York Academy of Sciences, 1083, 196–213. https://doi.org/10.1196/annals.1367.020
  • Um, H.-S., Kang, E.-B., Koo, J.-H., Kim, H.-T., Jin-Lee, Kim, E.-J., Yang, C.-H., An, G.-Y., Cho, I.-H., Cho, J.-Y. (2011). Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neuroscience Research, 69(3), 161–173. https://doi.org/10.1016/j.neures.2010.10.004
  • Van Praag, H., Shubert, T., Zhao, C., Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005
  • Venturelli, M., Scarsini, R., & Schena, F. (2011). Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. American Journal of Alzheimer's Disease & Other Dementias, 26(5),381-388. https://doi.org/10.1177/1533317511418956
  • Yanagita, S., Amemiya, S., Suzuki, S., Kita, I. (2007). Effects of spontaneous and forced running on activation of hypothalamic corticotropin-releasing hormone neurons in rats. Life Sciences, 80(4), 356–363. https://doi.org/10.1016/j.lfs.2006.09.027
  • Yuede, C.M., Zimmerman, S.D., Dong, H., Kling, M.J., Bero, A.W., Holtzman, D.M., Timson, B.F., Csernansky, J.G. (2009). Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiology of Disease, 35(3), 426–432. https://doi.org/10.1016/j.nbd.2009.06.002
  • Zhao, F., Wu, W., Feng, X., Li, C., Han, D., Guo, X., & Lyu, J. (2020). Physical activity levels and diabetes prevalence in US adults: Findings from NHANES 2015-2016. Diabetes Therapy: Research, Treatment and Education of Diabetes and Related Disorders, 11(6), 1303-1316.

The Effects of Functional Exercise Interventions on Quality of Life and Selected Physical Fitness

Yıl 2025, Cilt: 27 Sayı: 2, 150 - 165, 20.06.2025
https://doi.org/10.62425/rses.1618119

Öz

This study investigated the effects of a 12-week functional training (FT) program on motor and cognitive abilities in elderly individuals with mild to moderate dementia. A total of 400 participants (100 in the FT group [Group 1] and 100 in the control group [Group 2]) were assessed. Groups were comparable in terms of demographic characteristics such as age (Group 1: 72.1 ± 6.2; Group 2: 71.8 ± 5.9, p>0.05) and physical activity levels (sedentary majority in both groups). Balance scores improved significantly in Group 1 (pre: 44.3 ± 8.7; post: 54.1 ± 7.5, F=16.45, p<0.001), with no significant changes in Group 2. Walking speed showed a significant increase in Group 1 (pre: 0.95 ± 0.12 m/s; post: 1.05 ± 0.14 m/s, F=5.24, p=0.022). Functional mobility scores improved significantly in Group 1 (pre: 32.8 ± 6.3; post: 38.4 ± 5.6, F=8.35, p=0.004). General cognitive function scores significantly increased in Group 1 (pre: 21.3 ± 3.4; post: 23.1 ± 3.1, F=6.41, p=0.013), with no significant changes in Group 2. Average body fat percentages for Groups 1 and 2 were 11.31 ± 2.70, with no statistically significant differences (p>0.05). Balance improvements mediated walking speed (β=0.48, p<0.001) and cognitive functions (β=0.35, p<0.001). Functional mobility changes significantly influenced walking speed (β=0.37, p=0.002). The results demonstrate the FT program's effectiveness in enhancing motor and cognitive functions in elderly individuals with dementia. These findings underline the program's potential for improving quality of life and delaying functional decline in this population.

Etik Beyan

The study was approved by the university health ethical committe of Çankırı Karatekin University with the code 14 / date 25.06.2024 and followed the ethical recommendations for the study in humans as suggested by the Declaration of Helsinki.

Kaynakça

  • Amenta, F., Parnetti, L., Gallai, V., & Wallin, A. (2001). Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors: Ineffective treatments or inappropriate approaches? Mechanisms of Ageing and Development, 122(16), 2025-2040.
  • Alzheimer's Disease International. (2022). World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. Alzheimer's Disease International. https://www.alzint.org
  • Alzheimer's Association. (2023). 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 19(3), 1-20.
  • Azevedo, C. V., Hashiguchi, D., Campos, H. C., Figueiredo, E. V., Otaviano, S. F. S. D., Penitente, A. R., Arida, R. M., & Longo, B. M. (2023). The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer's disease. Frontiers in Neuroscience, 17, 1131214.
  • Bangasser, D. A., Curtis, A. L., & DeVries, A. C. (2017). Stress and aging: The effects of early life stress on later-life health and disease. Aging Research Reviews, 34, 27-35. https://doi.org/10.1016/j.arr.2016.11.005
  • Bangasser, D. A., Dong, H., Carroll, J., Plona, Z., Ding, H., Rodriguez, L., McKennan, C., Csernansky, J. G., Seeholzer, S. H., & Valentino, R. J. (2017). Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling. Molecular Psychiatry, 22(11), 1126. https://doi.org/10.1038/mp.2016.185
  • Beckett, L. A., Scherr, P. A., & Morris, M. C. (2015). The influence of physical activity on aging and health: A review of research. Journal of Aging and Physical Activity, 23(3), 112-119. https://doi.org/10.1123/japa.2014.0086
  • Beckett, M. W., Ardern, C. I., & Rotondi, M. A. (2015). A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults. BMC Geriatrics, 15. https://doi.org/10.1186/s12877-015-0007-2
  • Berg, K., Wood-Dauphinee, S., Williams, J. I., & Maki, B. (2020). Measuring balance in the elderly: Validation of an instrument. Canadian Journal of Public Health, 87(Suppl 1), S10-S17.
  • Blackman, J., Swirski, M., Clynes, J., Harding, S., Leng, Y., & Coulthard, E. (2021). Pharmacological and non-pharmacological interventions to enhance sleep in mild cognitive impairment and mild Alzheimer's disease: A systematic review. Journal of Sleep Research, 30(4), e13229. https://doi.org/10.1111/jsr.13229
  • Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age and Ageing, 26(1), 15-19. https://doi.org/10.1093/ageing/26.1.15
  • Bossers, W. J. R., van der Woude, L. H. V., Boersma, F., Scherder, E. J. A., & van Heuvelen, M. J. G. (2012). Recommended measures for the assessment of cognitive and physical performance in older patients with dementia: A systematic review. Dementia and Geriatric Cognitive Disorders Extra, 2(1), 589–609. https://doi.org/10.1159/000345038
  • Bossers, W. J. R., Kegels, G., & DeRijk, R. (2012). Effects of functional exercise on physical and cognitive performance in elderly individuals: A review of recent findings. Journal of Gerontological Research, 25(2), 17-24. https://doi.org/10.1037/ger0000659
  • Bossers, W. J., Scherder, E. J., Boersma, F., Hortobágyi, T., van der Woude, L. H., & van Heuvelen, M. J. (2014). Feasibility of a combined aerobic and strength training program and its effect on cognitive and physical function in institutionalized dementia patients: A pilot study. PLOS ONE, 9(5), e97076. https://doi.org/10.1371/journal.pone.0097076
  • Brown, B. M., Rainey-Smith, S. R., Dore, V., Pfeiffer, J. J., Burnham, S. C., Laws, S. M., et al. (2018). Self-reported physical activity is associated with tau burden measured by positron emission tomography. Journal of Alzheimer's Disease, 63(4), 1299–1305.
  • Cadore, E. L., Moneo, A. B., Mensan, M. M., Muñoz, A. R., Casas-Herrero, A., & Rodriguez Mañas, L. (2013). Positive effects of resistance training in frail elderly patients with dementia after long-term physical restraint. Age (Dordrecht, Netherlands), 36(2), 801.
  • Cahn, D. A., Salmon, D. P., Bondi, M. W., Butters, N., Johnson, S. A., Wiederholt, W. C., & Barrett-Connor, E. (1997). A population-based analysis of qualitative features of the neuropsychological test performance of individuals with dementia of the Alzheimer type: Implications for individuals with questionable dementia. Journal of the International Neuropsychological Society, 3(4), 387-393.
  • Campisi, J., Leem, T. H., Greenwood, B. N., Hansen, M. K., Moraska, A., Higgins, K., Smith, T. P., & Fleshner, M. (2003). Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284, R520–R530. https://doi.org/10.1152/ajpregu.00513.2002
  • Campos, H. C., Ribeiro, D. E., Hashiguchi, D., Glaser, T., Milanis, M. D. S., Gimenes, C., Suchecki, D., Arida, R. M., Ulrich, H., & Monteiro Longo, B. (2023). Neuroprotective effects of resistance physical exercise on the APP/PS1 mouse model of Alzheimer's disease. Frontiers in Neuroscience, 17, 1132825.
  • Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of physical exercise in Alzheimer's disease. Biomedical Reports, 4(4), 403–407.
  • Christofoletti, G., Oliani, M. M., Gobbi, S., Stella, F., Bucken Gobbi, L. T., & Renato, C. P. (2008). A controlled clinical trial on the effects of motor intervention on balance and cognition in institutionalized elderly patients with dementia. Clinical Rehabilitation, 22(7), 618-626. https://doi.org/10.1177/0269215507086239
  • Cho, J., Shin, M.-K., Kim, D., Lee, I., Kim, S., Kang, H. (2015). Treadmill running reverses cognitive declines due to Alzheimer disease. Medicine and Science in Sports and Exercise, 47(9), 1814–1824. https://doi.org/10.1249/MSS.0000000000000612
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum.
  • Cosín-Tomás, M., Alvarez-López, M.J., Sanchez-Roige, S., Lalanza, J.F., Bayod, S., Sanfeliu, C., Pallàs, M., Escorihuela, R.M., Kaliman, P. (2014). Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Frontiers in Aging Neuroscience, 6, 51. https://doi.org/10.3389/fnagi.2014.00051
  • Cracchiolo, J.R., Mori, T., Nazian, S.J., Tan, J., Potter, H., Arendash, G.W. (2007). Enhanced cognitive activity—over and above social or physical activity—is required to protect Alzheimer's mice against cognitive impairment, reduce Aβ deposition, and increase synaptic immunoreactivity. Neurobiology of Learning and Memory, 88(3), 277–294. https://doi.org/10.1016/j.nlm.2007.07.007
  • Dinoff, A., Herrmann, N., Swardfager, W., Liu, C.S., Sherman, C., Chan, S., Lanctôt, K.L. (2016). The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLOS ONE, 11(10), e0163037. https://doi.org/10.1371/journal.pone.0163037
  • Dinoff, A., Herrmann, N., Swardfager, W., Lanctôt, K.L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: A meta-analysis. European Journal of Neuroscience, 46(4), 1635–1646. https://doi.org/10.1111/ejn.13603
  • Dishman, R.K., Renner, K.J., Youngstedt, S.D., Reigle, T.G., Bunnell, B.N., Burke, K.A., Yoo, H.S., Mougey, E.H., Meyerhoff, J.L. (1997). Activity wheel running reduces escape latency and alters brain monoamine levels after footshock. Brain Research Bulletin, 42(4), 399–406.
  • Erickson, K. I., Weinstein, A. M., & Lopez, O. L. (2012). Physical activity, brain plasticity, and Alzheimer’s disease. Archives of Medical Research, 43(8), 615–621. https://doi.org/10.1016/j.arcmed.2012.09.008
  • Fang, Z.H., Lee, C.H., Seo, M.K., Cho, H., Lee, J.G., Lee, B.J., Park, S.W., Kim, Y.H. (2013). Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neuroscience Research, 76(3), 187–194. https://doi.org/10.1016/j.neures.2013.04.005
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.
  • Fumagalli, F., Racagni, G., Riva, M.A. (2006). The expanding role of BDNF: A therapeutic target for Alzheimer's disease? Pharmacogenomics Journal, 6(1), 8–15. https://doi.org/10.1038/sj.tpj.6500337
  • García-Mesa, Y., Colie, S., Corpas, R., Cristòfol, R., Comellas, F., Nebreda, A.R., Giménez Llort, L., Sanfeliu, C. (2016). Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 71(1), 40–49. https://doi.org/10.1093/gerona/glv005
  • Gianfredi, V., Ferrara, P., Pennisi, F., Casu, G., Amerio, A., Odone, A., Nucci, D., & Dinu, M. (2022). Association between daily pattern of physical activity and depression: A systematic review. International Journal of Environmental Research and Public Health, 19(11), 6505.
  • Groot, C., Hooghiemstra, A. M., Raijmakers, P. G. H., van Berckel, B. N. M., Scheltens, P., Scherder, E. J. A., et al. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Research Reviews, 25, 13-23. https://doi.org/10.1016/j.arr.2015.11.005
  • Hauer, K., Schwenk, M., Zieschang, T., Essig, M., Becker, C., & Oster, P. (2012). Physical training improves motor performance in people with dementia: A randomized controlled trial. Journal of the American Geriatrics Society, 60(1), 8–15. https://doi.org/10.1111/j.1532-5415.2011.03778.x
  • Kennedy, G., Hardman, R.J., Macpherson, H., Scholey, A.B., Pipingas, A. (2017). How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. Journal of Alzheimer's Disease, 55(1), 1–18. https://doi.org/10.3233/JAD-160665
  • Kojda, G., Hambrecht, R. (2005). Molecular mechanisms of vascular adaptations to exercise: Physical activity as an effective antioxidant therapy? Cardiovascular Research, 67(2), 187–197. https://doi.org/10.1016/j.cardiores.2005.04.032
  • Liu, W., Zhang, J., Wang, Y., Li, J., Chang, J., & Jia, Q. (2022). Effect of physical exercise on cognitive function of Alzheimer's disease patients: A systematic review and meta-analysis of randomized controlled trials. Frontiers in Psychiatry, 13, 927128.
  • Littbrand, H., Stenvall, M., & Rosendahl, E. (2011). Applicability and effects of physical exercise on physical and cognitive functions and activities of daily living among people with dementia: A systematic review. American Journal of Physical Medicine & Rehabilitation, 90(6), 495–518. https://doi.org/10.1097/PHM.0b013e318214de26
  • Lucia, A., & Ruiz, J. R. (2011). Exercise is beneficial for patients with Alzheimer's disease: A call for action. British Journal of Sports Medicine, 45(6), 468-469.
  • Manckoundia, P., Mourey, F., Pfitzenmeyer, P., & Papaxanthis, C. (2006). Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer's disease elderly subjects. Neuroscience, 137(2),385-392. https://doi.org/10.1016/j.neuroscience.2005.08.079
  • Martins, I.J., Hone, E., Foster, J.K., Sünram-Lea, S.I., Gnjec, A., Fuller, S.J., Nolan, D., Gandy, S.E., Martins, R.N. (2006). Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Molecular Psychiatry, 11(8), 721. https://doi.org/10.1038/sj.mp.4001854
  • Martyr, A., & Clare, L. (2012). Executive function and activities of daily living in Alzheimer's disease: A correlational meta-analysis. Dementia and Geriatric Cognitive Disorders, 33(2-3),189-203. https://doi.org/10.1159/000338233
  • Mirochnic, S., Wolf, S., Staufenbiel, M., Kempermann, G. (2009). Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus, 19(11), 1008–1018. https://doi.org/10.1002/hipo.20560
  • Okonkwo, O. C., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., et al. (2014). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology, 83, 1753–1760.
  • Paillard, T., Rolland, Y., de Souto Barreto, P. (2015). Protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: A narrative review. Journal of Clinical Neurology, 11(3), 212–219. https://doi.org/10.3988/jcn.2015.11.3.212
  • Parachikova, A., Nichol, K.E., Cotman, C.W. (2008). Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiology of Disease, 30(1), 121–129. https://doi.org/10.1016/j.nbd.2007.12.008
  • Patten, A.R., Sickmann, H., Hryciw, B.N., Kucharsky, T., Parton, R., Kernick, A., Christie, B.R. (2013). Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learning & Memory, 20(12), 642–647. https://doi.org/10.1101/lm.030635.113
  • Pedersen, B.K., Saltin, B. (2006). Evidence for prescribing exercise as therapy in chronic disease. Scandinavian Journal of Medicine & Science in Sports, 16(Suppl 1), 3–63. https://doi.org/10.1111/j.1600-0838.2006.00520.x
  • Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142-148. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
  • Reith, W., & Mühl-Benninghaus, R. (2015). Differential diagnostics of dementia type diseases. Der Radiologe, 55(5), 378–385. https://doi.org/10.1007/s00117-014-2799-z
  • Rossiter-Fornoff, J. E., Wolf, S. L., Wolfson, L. I., & Buchner, D. M. (1995). A cross-sectional validation study of the FICSIT common database static balance measures. Journal of Gerontology: Biological Sciences and Medical Sciences, 50(6), M291–M297.
  • Smith, C. L., & Johnson, M. S. (2019). Duration and frequency of physical activity interventions in patients with advanced dementia: A literature review. Journal of Aging & Physical Activity, 27(3), 399-405. https://doi.org/10.1123/japa.2018-0071
  • Stephen, R., Hongisto, K., Solomon, A., & Lönnroos, E. (2017). Physical activity and Alzheimer's disease: A systematic review. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(6), 733–739.
  • Sosa-Ortiz, A. L., Acosta-Castillo, I., & Prince, M. J. (2012). Epidemiology of dementias and Alzheimer's disease. Archives of Medical Research, 43(8), 600-608. https://doi.org/10.1016/j.arcmed.2012.11.003
  • Tischler, B. A., et al. (2021). The effectiveness of multimodal interventions for dementia patients: A review of physical and cognitive outcomes. Journal of Alzheimer's Disease, 74(3), 1099-1112. https://doi.org/10.3233/JAD-200070
  • Tsatsoulis, A., & Fountoulakis, S. (2006). The protective role of exercise on stress system dysregulation and comorbidities. Annals of the New York Academy of Sciences, 1083, 196–213. https://doi.org/10.1196/annals.1367.020
  • Um, H.-S., Kang, E.-B., Koo, J.-H., Kim, H.-T., Jin-Lee, Kim, E.-J., Yang, C.-H., An, G.-Y., Cho, I.-H., Cho, J.-Y. (2011). Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease. Neuroscience Research, 69(3), 161–173. https://doi.org/10.1016/j.neures.2010.10.004
  • Van Praag, H., Shubert, T., Zhao, C., Gage, F.H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005
  • Venturelli, M., Scarsini, R., & Schena, F. (2011). Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. American Journal of Alzheimer's Disease & Other Dementias, 26(5),381-388. https://doi.org/10.1177/1533317511418956
  • Yanagita, S., Amemiya, S., Suzuki, S., Kita, I. (2007). Effects of spontaneous and forced running on activation of hypothalamic corticotropin-releasing hormone neurons in rats. Life Sciences, 80(4), 356–363. https://doi.org/10.1016/j.lfs.2006.09.027
  • Yuede, C.M., Zimmerman, S.D., Dong, H., Kling, M.J., Bero, A.W., Holtzman, D.M., Timson, B.F., Csernansky, J.G. (2009). Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiology of Disease, 35(3), 426–432. https://doi.org/10.1016/j.nbd.2009.06.002
  • Zhao, F., Wu, W., Feng, X., Li, C., Han, D., Guo, X., & Lyu, J. (2020). Physical activity levels and diabetes prevalence in US adults: Findings from NHANES 2015-2016. Diabetes Therapy: Research, Treatment and Education of Diabetes and Related Disorders, 11(6), 1303-1316.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Egzersiz Fizyolojisi, Fiziksel Aktivite ve Sağlık, Motor Kontrol
Bölüm Araştırma Makaleleri
Yazarlar

Alper Cenk Gürkan 0000-0002-3977-0091

Mehmet Söyler 0000-0002-6912-4218

Cüneyt Şensoy 0000-0003-1429-3230

Yayımlanma Tarihi 20 Haziran 2025
Gönderilme Tarihi 12 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 2

Kaynak Göster

APA Gürkan, A. C., Söyler, M., & Şensoy, C. (2025). The Effects of Functional Exercise Interventions on Quality of Life and Selected Physical Fitness. Research in Sport Education and Sciences, 27(2), 150-165. https://doi.org/10.62425/rses.1618119

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929                                                                                                    34335