Derleme
BibTex RIS Kaynak Göster

Yakıt Hücrelerinde Kullanılan Katı Hidrojen Kaynaklarından Üretilen Hidrojen Enerjisinin Sağlık Sektöründe Kullanımı

Yıl 2022, Cilt: 12 Sayı: 1, 171 - 174, 14.01.2022
https://doi.org/10.33631/sabd.1055536

Öz

Günümüzde fosil yakıtlar bir enerji kaynağı olarak kullanılsa da fosil yakıtların bir gün tükeneceği unutulmamalıdır. Ayrıca fosil yakıtlarla birlikte sera gazlarının atmosfere salınmasıyla çevreyi ciddi şekilde tehdit ettiği görülüyor. Bunun en güzel örneğini günümüz iklim değişikliklerinde görüyoruz. Bu nedenle sürdürülebilir ve çevre dostu enerji kaynaklarına ihtiyaç vardır. Bu enerji kaynaklarından biri de hidrojen kaynaklarından elde edilen hidrojen enerjisidir. Hidrojen enerjisinin kullanımı için ekonomik ve kullanımı kolay bir enerji kaynağı seçmek de önemlidir. Günümüzde katı hidrojen kaynakları birçok alanda kullanım için tercih edilmektedir. Katı hidrojen kaynaklarının taşınması, depolanması ve bakımı kolaydır. Ayrıca yüksek verimli hidrojen sağlar ve çevre dostu bir hidrojen kaynağıdır. Yakıt hücrelerinde katı hidrojen kaynakları kullanılarak sağlık sektöründe sürekli bir enerji kaynağı elde etmek mümkündür. Özellikle hastanelerde elektrik enerjisinin ne kadar önemli olduğu unutulmamalıdır.

Kaynakça

  • Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy. 2015; 40(34): 11094-111.
  • Pique S, Weinberger B, De-Dianous V, Debray B. Comparative study of regulations, codes and standards and practices on hydrogen fuelling stations. International Journal of Hydrogen Energy. 2017; 42(11): 7429-39.
  • Loisel R, Baranger L, Chemouri N, Spinu S, Pardo S. Economic evaluation of hybrid off-shore wind power and hydrogen storage system. International Journal of Hydrogen Energy. 2015; 40(21): 6727-39.
  • Gao S, Wang X, Liu H, He T, Wang Y, Li S, et al. Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. Journal of Power Sources. 2019; 438: 227006.
  • Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy. 2007; 32(9): 1121-40.
  • Li Z, Zhao D, Luo J. Nanoporous palladium catalyst for the reduction of aromatic nitro compounds with silane/alcohol system as the hydrogen source. Inorganic Chemistry Communications. 2019; 100: 1-5.
  • Daryakenari AA, Mosallanejad B, Zare E, Daryakenari MA, Montazeri A, Apostoluk A, et al. Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions. International Journal of Hydrogen Energy. 2021; 46(10): 7263-83.
  • Rocha DHD, de Souza TAZ, Coronado CJR, Silveira JL, Silva RJ. Exergoenvironmental analysis of hydrogen production through glycerol steam reforming. International Journal of Hydrogen Energy. 2021; 46(1): 1385-402.
  • Chen Y, Yin Y, Wang J. Comparison of fermentative hydrogen production from glycerol using immobilized and suspended mixed cultures. International Journal of Hydrogen Energy. 2021; 46(13): 8986-94.
  • Wang K, Heltzel J, Sandefur E, Culley K, Lemcoff G, Voutchkova-Kostal A. Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes. Journal of Organometallic Chemistry. 2020; 919: 121310.
  • Adair GRA, Williams JMJ. Oxidant-free oxidation: ruthenium catalysed dehydrogenation of alcohols. Tetrahedron Lett. 2005; 46(47): 8233-5.
  • Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M. Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions. Angew Chem-Int Edit. 2011; 50(41): 9593-7.
  • Ligthart GBWL, Meijer RH, Donners MPJ, Meuldijk J, Vekemans JAJM, Hulshof LA. Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas. Tetrahedron Lett. 2003; 44(7): 1507-9.
  • Sudhakar M, Naresh G, Rambabu G, Anjaneyulu C, Padmasri AH, Kantam ML, et al. Crude bio-glycerol as a hydrogen source for the selective hydrogenation of aromatic nitro compounds over Ru/MgLaO catalyst. Catalysis Communications. 2016; 74: 91-4.
  • Makhov GA, Bazhin NM. Methane emission from lakes. Chemosphere. 1999; 38(6): 1453-9.
  • Boubenia A, Hafaifa A, Kouzou A, Mohammedi K, Becherif M. Carbone dioxide capture and utilization in gas turbine plants via the integration of power to gas. Petroleum. 2017; 3(1): 127-37.
  • Chen K, Yuan D, Zhao Y. Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Optics & Laser Technology. 2021; 137: 106808.
  • Malleswararao K, Aswin N, Srinivasa Murthy S, Dutta P. Studies on a dynamically coupled multifunctional metal hydride thermal battery. Journal of Alloys and Compounds. 2021; 866: 158979.
  • Goksu H. Recyclable aluminium oxy-hydroxide supported Pd nanoparticles for selective hydrogenation of nitro compounds via sodium borohydride hydrolysis. New J Chem. 2015; 39(11): 8498-504.
  • Deka JR, Saikia D, Lu NF, Chen KT, Kao HM, Yang YC. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Appl Surf Sci. 2021; 538: 15.
  • Goksu H, Yildiz Y, Celik B, Yazici M, Kilbas B, Sen F. Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst. Catal Sci Technol. 2016; 6(7): 2318-24.
  • Sorensen B. Preface to first edition. In: Sørensen B, editor. Hydrogen and Fuel Cells (Second Edition). Boston: Academic Press; 2012. p. vi.
  • Debnath T, Ash T, Sarkar S, Ghosh A, Das AK. Exploration of M(100)-2×1 (M=Si, Ge) surface termination through hydrogen passivation using ethane and ammonia-borane derivatives: A theoretical approach. Journal of Molecular Graphics and Modelling. 2019; 87: 11-21.
  • Abdelhamid HN. Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. Journal of Solid State Chemistry. 2021; 297: 122034.
  • Zhang S, Wang L, Tai Y-L, Teng Y-L, Zhao J, Zhu W, et al. Metal carbonates-induced solution-free dehydrogenation of alkaline earth metal hydrides at room temperature. Journal of Solid State Chemistry. 2020; 289: 121485.

Use in the Healthcare Industry of the Hydrogen Energy Produced by Solid Hydrogen Sources Used in Fuel Cells

Yıl 2022, Cilt: 12 Sayı: 1, 171 - 174, 14.01.2022
https://doi.org/10.33631/sabd.1055536

Öz

Although as an energy source today fossil fuels are used as an energy source, it should not be forgotten that fossil fuels will run out one day. In addition, it is seen that greenhouse gases which emitted from fossil fuels are seriously threatening the environment with their release into the atmosphere. We see the best example of this in today's climate changes. Therefore, sustainable and environmentally friendly energy resources are needed. One of these energy sources is also hydrogen energy which obtained from hydrogen sources. It is also important to choose an economical and easy-to-use energy source for the use of hydrogen energy. Today, solid hydrogen sources are preferred for use in many areas. Solid sources of hydrogen are easy to transport, store and maintain. In addition, it provides high efficiency hydrogen and it is an environmentally friendly hydrogen source. It is possible to obtain a continuous energy source in the health sector by using solid hydrogen sources in fuel cells. It should not be forgotten how important electrical energy is, especially in hospitals.

Kaynakça

  • Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy. 2015; 40(34): 11094-111.
  • Pique S, Weinberger B, De-Dianous V, Debray B. Comparative study of regulations, codes and standards and practices on hydrogen fuelling stations. International Journal of Hydrogen Energy. 2017; 42(11): 7429-39.
  • Loisel R, Baranger L, Chemouri N, Spinu S, Pardo S. Economic evaluation of hybrid off-shore wind power and hydrogen storage system. International Journal of Hydrogen Energy. 2015; 40(21): 6727-39.
  • Gao S, Wang X, Liu H, He T, Wang Y, Li S, et al. Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. Journal of Power Sources. 2019; 438: 227006.
  • Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy. 2007; 32(9): 1121-40.
  • Li Z, Zhao D, Luo J. Nanoporous palladium catalyst for the reduction of aromatic nitro compounds with silane/alcohol system as the hydrogen source. Inorganic Chemistry Communications. 2019; 100: 1-5.
  • Daryakenari AA, Mosallanejad B, Zare E, Daryakenari MA, Montazeri A, Apostoluk A, et al. Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions. International Journal of Hydrogen Energy. 2021; 46(10): 7263-83.
  • Rocha DHD, de Souza TAZ, Coronado CJR, Silveira JL, Silva RJ. Exergoenvironmental analysis of hydrogen production through glycerol steam reforming. International Journal of Hydrogen Energy. 2021; 46(1): 1385-402.
  • Chen Y, Yin Y, Wang J. Comparison of fermentative hydrogen production from glycerol using immobilized and suspended mixed cultures. International Journal of Hydrogen Energy. 2021; 46(13): 8986-94.
  • Wang K, Heltzel J, Sandefur E, Culley K, Lemcoff G, Voutchkova-Kostal A. Transfer hydrogenation of levulinic acid from glycerol and ethanol using water-soluble iridium N-heterocyclic carbene complexes. Journal of Organometallic Chemistry. 2020; 919: 121310.
  • Adair GRA, Williams JMJ. Oxidant-free oxidation: ruthenium catalysed dehydrogenation of alcohols. Tetrahedron Lett. 2005; 46(47): 8233-5.
  • Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M. Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions. Angew Chem-Int Edit. 2011; 50(41): 9593-7.
  • Ligthart GBWL, Meijer RH, Donners MPJ, Meuldijk J, Vekemans JAJM, Hulshof LA. Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas. Tetrahedron Lett. 2003; 44(7): 1507-9.
  • Sudhakar M, Naresh G, Rambabu G, Anjaneyulu C, Padmasri AH, Kantam ML, et al. Crude bio-glycerol as a hydrogen source for the selective hydrogenation of aromatic nitro compounds over Ru/MgLaO catalyst. Catalysis Communications. 2016; 74: 91-4.
  • Makhov GA, Bazhin NM. Methane emission from lakes. Chemosphere. 1999; 38(6): 1453-9.
  • Boubenia A, Hafaifa A, Kouzou A, Mohammedi K, Becherif M. Carbone dioxide capture and utilization in gas turbine plants via the integration of power to gas. Petroleum. 2017; 3(1): 127-37.
  • Chen K, Yuan D, Zhao Y. Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Optics & Laser Technology. 2021; 137: 106808.
  • Malleswararao K, Aswin N, Srinivasa Murthy S, Dutta P. Studies on a dynamically coupled multifunctional metal hydride thermal battery. Journal of Alloys and Compounds. 2021; 866: 158979.
  • Goksu H. Recyclable aluminium oxy-hydroxide supported Pd nanoparticles for selective hydrogenation of nitro compounds via sodium borohydride hydrolysis. New J Chem. 2015; 39(11): 8498-504.
  • Deka JR, Saikia D, Lu NF, Chen KT, Kao HM, Yang YC. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Appl Surf Sci. 2021; 538: 15.
  • Goksu H, Yildiz Y, Celik B, Yazici M, Kilbas B, Sen F. Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst. Catal Sci Technol. 2016; 6(7): 2318-24.
  • Sorensen B. Preface to first edition. In: Sørensen B, editor. Hydrogen and Fuel Cells (Second Edition). Boston: Academic Press; 2012. p. vi.
  • Debnath T, Ash T, Sarkar S, Ghosh A, Das AK. Exploration of M(100)-2×1 (M=Si, Ge) surface termination through hydrogen passivation using ethane and ammonia-borane derivatives: A theoretical approach. Journal of Molecular Graphics and Modelling. 2019; 87: 11-21.
  • Abdelhamid HN. Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. Journal of Solid State Chemistry. 2021; 297: 122034.
  • Zhang S, Wang L, Tai Y-L, Teng Y-L, Zhao J, Zhu W, et al. Metal carbonates-induced solution-free dehydrogenation of alkaline earth metal hydrides at room temperature. Journal of Solid State Chemistry. 2020; 289: 121485.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Beslenme ve Diyetetik
Bölüm Derlemeler
Yazarlar

Elif Aydınlı 0000-0002-4823-344X

Haydar Göksu Bu kişi benim 0000-0002-6544-3641

Yayımlanma Tarihi 14 Ocak 2022
Gönderilme Tarihi 21 Şubat 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

Vancouver Aydınlı E, Göksu H. Use in the Healthcare Industry of the Hydrogen Energy Produced by Solid Hydrogen Sources Used in Fuel Cells. SABD. 2022;12(1):171-4.