Derleme
BibTex RIS Kaynak Göster

MINERAL SUPPLEMENTS IN THE CORONAVIRUS DISEASE

Yıl 2022, , 50 - 54, 10.02.2022
https://doi.org/10.26650/JARHS2021-910667

Öz

The coronavirus disease (COVID-19), which emerged in December 2019 and quickly became a worldwide pandemic, has become an important public health problem. COVID-19 is an infectious disease caused by a novel virus called severe acute respiratory syndrome coronavirus 2. There is a mutual relationship between infectious diseases and the effect of nutrition on the immune system. Malnutrition can reduce the defenses of the immune system, increase the risk of contracting infectious diseases, and increase the severity of symptoms of these diseases. Minerals are necessary for the healthy functioning of the immune system. They are effective in both innate and acquired immunity. It is thought that the need for minerals in nutrition may increase in COVID-19. In the light of all these factors, it may be necessary to use some mineral supplements in COVID-19 cases to deal with the increasing demand . Currently, there are no guidelines on mineral supplements for the treatment of the disease due to its very new nature. This study highlights problems in the immune system caused by deficiency of copper, zinc, iron and selenium minerals and discusses whether the supplements of these minerals can be effective in the treatment of COVID-19.

Kaynakça

  • 1. WHO. Q&As on COVID-19 and related health topic.(cited 2020 September 10) Available from: URL: https://www.who.int/emergencies/ diseases/novel-coronavirus-2019/question-andanswers- hub/
  • 2. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018;10(10):1531. 3. Calder PC. Feeding the immune system. Proc Nutr Soc 2013;72(3):299-309.
  • 4. Karabulut H, Gülay M. Antioksidanlar. Maeu Vet Fak Derg 2016;1(1):65-76.
  • 5. Junaid K, Ejaz H, Abdalla AE, Abosalif KOA, Ullah MI, Yasmeen H et al. Effective Immune Functions of Micronutrients against SARSCoV- 2. Nutrients 2020;12(10):2992.
  • 6. Barceloux DG, Barceloux D. Copper. Journal of Toxicology: Clinical Toxicology 1999 37:2;217-30.
  • 7. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System- Working in Harmony to Reduce the Risk of Infection. Nutrients 2020;12(1):236.
  • 8. WHO, FAO. Vitamin and mineral requirements in human nutrition, Second edition. (cited 2020 September 10) Available from: URL: https://apps.who.int/iris/bitstream/ handle/10665/42716/9241546123.pdf?ua=1
  • 9. Saeed F, Nadeem M, Ahmed RS, Nadeem MT, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds – a review, Food and Agricultural Immunology 2016;27(2):205-29.
  • 10. Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol 1993;59(12):4374-6.
  • 11. Liu L, Geng X, McDermott J, Shen J, Corbin C, Xuan S, et al. Copper Deficiency in the Lungs of TNF-α Transgenic Mice. Front Physiol 2016;14;7:234.
  • 12. Hackler J, Heller RA, Sun Q, Schwarzer M, Diegmann J, Bachmann M, et al. Relation of Serum Copper Status to Survival in COVID-19. Nutrients 2021;13(6):1898.
  • 13. Fooladi S, Matin S, Mahmoodpoor A. Copper as a potential adjunct therapy for critically ill COVID-19 patients. Clin Nutr ESPEN 2020;40:90-1.
  • 14. Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020;12(6):1562.
  • 15. Li C, Li Y, Ding C. The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int J Mol Sci 2019;20(1):175.
  • 16. Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 2012;7(11):e50568.
  • 17. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev 2015;14(4):277-85.
  • 18. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019;10(4):696-710.
  • 19. Barnett JB, Hamer DH, Meydani SN. Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev 2010;68(1):30-7.
  • 20. Rerksuppaphol S, Rerksuppaphol L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr Rep 2019;11(2):7954.
  • 21. Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar P, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis 2020;100:343-9.
  • 22. Finzi E. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients. Int J Infect Dis 2020;99:307-9.
  • 23. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, et al. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med. 2020; 46(1):17-26.
  • 24. Fosmire GJ. Zinc toxicity. Am J Clin Nutr 1990;51(2):225-7.
  • 25. Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals 2016;29(4):573-91.
  • 26. Tounian P, Chouraqui JP. Fer et nutrition [Iron in nutrition]. Arch Pediatr 2017;24(5S):5S23- 5S31.
  • 27. Özbolat G, Tuli A. Demir Fazlalığı İçin Şelasyon Tedavisi ve Şelasyon Ligandları. Arsiv Kaynak Tarama Dergisi 2019;28(1):66-81.
  • 28. Wessling-Resnick M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu Rev Nutr 2018;21;38:431-58.
  • 29. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis 2020;97:303-5.
  • 30. Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, et al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 2020;68(4):213-4.
  • 31. Augustine LF, Mullapudi V, Subramanian S, Kulkarni B. Infection-iron interaction during COVID-19 pandemic: Time to re-design iron supplementation programs. Med Hypotheses 2020;143:110173.
  • 32. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012;16(7):705-43.
  • 33. Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019;11(9):2101.
  • 34. Beck MA, Matthews CC. Micronutrients and host resistance to viral infection. Proc Nutr Soc 2000;59(4):581-5.
  • 35. Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020;111(6):1297-9.
  • 36. Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS. Nutritional status of patients with COVID-19. Int J Infect Dis 2020;100:390-3.
  • 37. Moghaddam A, Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, Hackler J, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020;12(7):2098.

KORONAVIRÜS HASTALIĞINDA MINERAL TAKVIYELERI

Yıl 2022, , 50 - 54, 10.02.2022
https://doi.org/10.26650/JARHS2021-910667

Öz

Aralık 2019’da ortaya çıkan ve kısa sürede dünya çapında pandemi halini alan koronavirüs hastalığı (COVID-19) önemli bir halk sağlığı sorunu haline gelmiştir. COVID-19, şiddetli akut solunum sendromu koronavirüs 2 adı verilen yeni bir virüsün neden olduğu bir enfeksiyon hastalığıdır. Beslenme ile bağışıklık sistemi ve enfeksiyon hastalıkları arasında karşılıklı ilişkiler mevcuttur. Yetersiz beslenme bağışıklık sisteminin savunmasını azaltabilir, enfeksiyon hastalıklarına yakalanma riskini artırabilir ve bu hastalıkların semptomlarının şiddetinde artışa neden olabilir. Mineraller immün sistemin sağlıklı çalışması için gerekli olup doğuştan ve kazanılmış bağışıklıkta etkindirler. COVID-19’da beslenmedeki mikro besin öğelerine ihtiyacın artabileceği düşünülmüştür. Artan ihtiyacı karşılamak için COVID-19’da bazı mineral takviyelerinin kullanımı gerekli olabilir. Henüz hastalığın çok yeni olmasından dolayı COVID-19’un tedavisi için mineral takviyesi konusunda bir rehber bulunmamaktadır. Bu derlemede, bakır, çinko, demir ve selenyum minerallerinin eksikliği durumunda immün sistemde görülen sorunları ve takviyelerinin COVID-19 üzerinde etkili olup olmayacağı tartışılmıştır.

Kaynakça

  • 1. WHO. Q&As on COVID-19 and related health topic.(cited 2020 September 10) Available from: URL: https://www.who.int/emergencies/ diseases/novel-coronavirus-2019/question-andanswers- hub/
  • 2. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients 2018;10(10):1531. 3. Calder PC. Feeding the immune system. Proc Nutr Soc 2013;72(3):299-309.
  • 4. Karabulut H, Gülay M. Antioksidanlar. Maeu Vet Fak Derg 2016;1(1):65-76.
  • 5. Junaid K, Ejaz H, Abdalla AE, Abosalif KOA, Ullah MI, Yasmeen H et al. Effective Immune Functions of Micronutrients against SARSCoV- 2. Nutrients 2020;12(10):2992.
  • 6. Barceloux DG, Barceloux D. Copper. Journal of Toxicology: Clinical Toxicology 1999 37:2;217-30.
  • 7. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System- Working in Harmony to Reduce the Risk of Infection. Nutrients 2020;12(1):236.
  • 8. WHO, FAO. Vitamin and mineral requirements in human nutrition, Second edition. (cited 2020 September 10) Available from: URL: https://apps.who.int/iris/bitstream/ handle/10665/42716/9241546123.pdf?ua=1
  • 9. Saeed F, Nadeem M, Ahmed RS, Nadeem MT, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds – a review, Food and Agricultural Immunology 2016;27(2):205-29.
  • 10. Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol 1993;59(12):4374-6.
  • 11. Liu L, Geng X, McDermott J, Shen J, Corbin C, Xuan S, et al. Copper Deficiency in the Lungs of TNF-α Transgenic Mice. Front Physiol 2016;14;7:234.
  • 12. Hackler J, Heller RA, Sun Q, Schwarzer M, Diegmann J, Bachmann M, et al. Relation of Serum Copper Status to Survival in COVID-19. Nutrients 2021;13(6):1898.
  • 13. Fooladi S, Matin S, Mahmoodpoor A. Copper as a potential adjunct therapy for critically ill COVID-19 patients. Clin Nutr ESPEN 2020;40:90-1.
  • 14. Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020;12(6):1562.
  • 15. Li C, Li Y, Ding C. The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int J Mol Sci 2019;20(1):175.
  • 16. Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 2012;7(11):e50568.
  • 17. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev 2015;14(4):277-85.
  • 18. Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019;10(4):696-710.
  • 19. Barnett JB, Hamer DH, Meydani SN. Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev 2010;68(1):30-7.
  • 20. Rerksuppaphol S, Rerksuppaphol L. A randomized controlled trial of zinc supplementation in the treatment of acute respiratory tract infection in Thai children. Pediatr Rep 2019;11(2):7954.
  • 21. Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar P, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis 2020;100:343-9.
  • 22. Finzi E. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients. Int J Infect Dis 2020;99:307-9.
  • 23. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, et al. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med. 2020; 46(1):17-26.
  • 24. Fosmire GJ. Zinc toxicity. Am J Clin Nutr 1990;51(2):225-7.
  • 25. Duck KA, Connor JR. Iron uptake and transport across physiological barriers. Biometals 2016;29(4):573-91.
  • 26. Tounian P, Chouraqui JP. Fer et nutrition [Iron in nutrition]. Arch Pediatr 2017;24(5S):5S23- 5S31.
  • 27. Özbolat G, Tuli A. Demir Fazlalığı İçin Şelasyon Tedavisi ve Şelasyon Ligandları. Arsiv Kaynak Tarama Dergisi 2019;28(1):66-81.
  • 28. Wessling-Resnick M. Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry. Annu Rev Nutr 2018;21;38:431-58.
  • 29. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis 2020;97:303-5.
  • 30. Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, et al. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 2020;68(4):213-4.
  • 31. Augustine LF, Mullapudi V, Subramanian S, Kulkarni B. Infection-iron interaction during COVID-19 pandemic: Time to re-design iron supplementation programs. Med Hypotheses 2020;143:110173.
  • 32. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012;16(7):705-43.
  • 33. Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019;11(9):2101.
  • 34. Beck MA, Matthews CC. Micronutrients and host resistance to viral infection. Proc Nutr Soc 2000;59(4):581-5.
  • 35. Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020;111(6):1297-9.
  • 36. Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS. Nutritional status of patients with COVID-19. Int J Infect Dis 2020;100:390-3.
  • 37. Moghaddam A, Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, Hackler J, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020;12(7):2098.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Nurgül Veyisoğlu 0000-0002-8103-1102

Beyza Mendeş 0000-0002-4182-1273

Yayımlanma Tarihi 10 Şubat 2022
Gönderilme Tarihi 14 Nisan 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

MLA Veyisoğlu, Nurgül ve Beyza Mendeş. “KORONAVIRÜS HASTALIĞINDA MINERAL TAKVIYELERI”. Sağlık Bilimlerinde İleri Araştırmalar Dergisi, c. 5, sy. 1, 2022, ss. 50-54, doi:10.26650/JARHS2021-910667.