Research Article
BibTex RIS Cite

Prostat Kanseri Hücre Hatlarında lncRNA H19 ve miR-29b-3p Ekspresyon Profilleri

Year 2025, Volume: 8 Issue: 3, 157 - 162, 28.10.2025
https://doi.org/10.26650/JARHS2025-1765794

Abstract

Amaç: Bu çalışmada, insan prostat kanseri hücre hatlarında (PC3, DU145, LNCaP) ve normal prostat epitel hücrelerinde (PNT1A) uzun olmayan kodlayıcı RNA H19 ve mikroRNA-29b-3p (miR-29b-3p) düzeylerinin incelenmesi ve bu moleküllerin prostat kanseri biyolojisindeki potansiyel rolleri ve etkileşimlerinin değerlendirilmesi amaçlanmıştır.

Gereç ve Yöntem: PC3, DU145, LNCaP ve PNT1A hücre hatları belirlenmiş protokole göre kültüre edilmiştir. Hücreler konfluansa ulaştığında toplam RNA ekstrakte edilmiştir. H19 ve miR-29b-3p ekspresyon düzeyleri RT-qPCR yöntemi ile ölçülmüş ve sırasıyla GAPDH ve U6 snRNA’ya göre normalize edilmiştir. Göreli gen ekspresyon düzeylerini belirlemek için 2-ΔΔCt yöntemi uygulanmıştır.

Bulgular: lncRNA H19 ve miR-29b-3p düzeylerindeki değişiklikler, tüm kanser hücre hatlarında PNT1A hücrelerine kıyasla istatistiksel olarak anlamlı bulunmuştur. H19 düzeyleri PC3'te belirgin şekilde yüksek, DU145’te orta derecede artmış, LNCaP'ta ise anlamlı şekilde azalmıştır. Tersine, miR-29b-3p düzeyleri DU145 ve LNCaP'ta artarken, PC3’te belirgin şekilde azalmıştır. İstatistiksel analizler özellikle H19 için PC3 ile diğer hücre hatları arasında ve miR-29b-3p için PC3 ile DU145 arasında anlamlı farklılıklar olduğunu göstermiştir (p<0,05).

Sonuç: Bulgularımız, PC3 hücrelerinde H19 ile miR-29b-3p arasında negatif bir korelasyon olduğunu göstermektedir; bu durum, H19’un miR-29b-3p için moleküler bir sünger görevi görebileceğini düşündürmektedir. LNCaP ile diğerleri arasında gözlemlediğimiz ekspresyon düzeyi farklılıkları, H19–miR-29b-3p ekseninin androjen reseptörü sinyallemesi ve tümör agresifliğinden etkilenebileceğini göstermektedir. Altta yatan mekanizmayı ve olası klinik önemini daha iyi anlayabilmek için ilave fonksiyonel çalışmalara ihtiyaç vardır.

References

  • Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74(3):229-63. google scholar
  • Absalan S, Vaziri H. The role of non-coding RNAs (ncRNAs) and their potential connection with cancer. Egypt J Med Hum Genet 2025;26(1):55. google scholar
  • Zhou YL, Yao WL, Chen SH, Wang P, Fu JW, Zhao JQ, et al. Global research landscape and emerging trends of non-coding RNAs in prostate cancer: a bibliometric analysis. Front Pharmacol 2025;15:1483186. google scholar
  • Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024;196:104275. google scholar
  • Ivanovic RF, Viana NI, Morais DR, Silva IA, Leite KR, Pontes-Junior J, et al. miR-29b enhances prostate cancer cell invasion independently of MMP-2 expression. Cancer Cell Int 2018;18(1):18. google scholar
  • Zhao J, Ma X, Xu H. miR-29b-3p inhibits 22Rv1 prostate cancer cell proliferation through the YWHAE/BCL-2 regulatory axis. Oncol Lett 2022;24(2):289. google scholar
  • Man X, Li Q, Wang B, Zhang H, Zhang S, Li Z. DNMT3A and DNMT3B in breast tumorigenesis and potential therapy. Front Cell Dev Biol 2022;10:916725. google scholar
  • Lv M, Zhong Z, Huang M, Tian Q, Jiang R, Chen J. lncRNA H19 regulates epithelial–mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta Mol Cell Res 2017;1864(10):1887-99. google scholar
  • Yan B, Guo Q, Nan XX, Wang Z, Yin Z, Yi L, et al. MicroRNA-29b inhibits cell proliferation and invasion and enhances apoptosis and chemotherapy effects of cisplatin via targeting of DNMT3b and AKT3 in prostate cancer. Onco Targets Ther 2015;8:557-65. google scholar
  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014;42(D1):D92-7. google scholar
  • Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, et al. The long noncoding RNA H19 regulates tumor plasticity in prostate cancer. Nat Commun 2021;12:7349. google scholar
  • Liu L, Liu L, Lu S. lncRNA H19 promotes viability and epithelial–mesenchymal transition of lung adenocarcinoma cells by targeting miR-29b-3p and modifying STAT3. Int J Oncol 2019;54(3):929-41. google scholar
  • Ren X, Liu G, Zhou J. Nuclear-activating miRNAs: unveiling the intricacies of subcellular miRNA function and regulation in cancer and immunity disease. Cancer Cell Int 2025;25(1):147. google scholar
  • Sur S, Steele R, Ray RB. miRNA-29b inhibits prostate tumor growth (in vivo). Cells 2019;8:1455. google scholar
  • Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, et al. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. Naunyn Schmiedebergs Arch Pharmacol 2025;398:1-20. google scholar
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 2016;17:272-83. google scholar
  • Zhang X, Wang G, Li X, Liu Y, Wu X, Zhou Y, et al. LncRNA H19 promotes gastric cancer metastasis via miR-148-3p/SOX-12 axis. Anal Cell Pathol 2024;2024(1):6217134. google scholar
  • El Sayed SR, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel) 2021;13(11):2680. google scholar

Expression Profiles of lncRNA H19 and miR-29b-3p in Prostate Cancer Cell Lines

Year 2025, Volume: 8 Issue: 3, 157 - 162, 28.10.2025
https://doi.org/10.26650/JARHS2025-1765794

Abstract

Objective: We aimed to evaluate the expression levels of long non-coding RNA H19 and microRNA-29b-3p (miR-29b-3p) in human prostate cancer cell lines (PC3, DU145, LNCaP) and in normal prostate epithelial cells (PNT1A) to explore their potential roles and interactions in prostate cancer biology.

Materials and Methods: All cell lines PC3, DU145, LNCaP, and PNT1A were cultured in the same type of medium, RPMI-1640. Total RNA was extracted from the cells once they reached confluency. H19 and miR-29b-3p levels were measured by real-time quantitative PCR and normalised to GAPDH and U6 snRNA, respectively. Their relative level was determined by the 2-ΔΔCt method.

Results: The alterations in lncRNA H19 and miR-29b-3p levels were statistically significant across all cancer cell lines compared to PNT1A cells. H19 levels were notably higher in PC3, moderately increased in DU145, and significantly decreased in LNCaP. Conversely, miR-29b-3p levels increased in DU145 and LNCaP but decreased markedly in PC3. Statistical analysis particularly showed significant differences between PC3 and other cell lines for lncRNA H19 and between PC3 and DU145 for miR-29b-3p (p<0.05).

Conclusion: Our findings show an inverse relationship between H19 and miR-29b-3p in PC3 cells, indicating that H19 may function as a molecular sponge for miR-29b-3p. The differences we observed in the expression levels between LNCaP and the others show that the H19–miR-29b-3p axis may be affected by androgen receptor signalling and tumour aggressiveness. To better understand the underlying mechanism and its potential clinical relevance, additional functional studies are necessary.

References

  • Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74(3):229-63. google scholar
  • Absalan S, Vaziri H. The role of non-coding RNAs (ncRNAs) and their potential connection with cancer. Egypt J Med Hum Genet 2025;26(1):55. google scholar
  • Zhou YL, Yao WL, Chen SH, Wang P, Fu JW, Zhao JQ, et al. Global research landscape and emerging trends of non-coding RNAs in prostate cancer: a bibliometric analysis. Front Pharmacol 2025;15:1483186. google scholar
  • Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024;196:104275. google scholar
  • Ivanovic RF, Viana NI, Morais DR, Silva IA, Leite KR, Pontes-Junior J, et al. miR-29b enhances prostate cancer cell invasion independently of MMP-2 expression. Cancer Cell Int 2018;18(1):18. google scholar
  • Zhao J, Ma X, Xu H. miR-29b-3p inhibits 22Rv1 prostate cancer cell proliferation through the YWHAE/BCL-2 regulatory axis. Oncol Lett 2022;24(2):289. google scholar
  • Man X, Li Q, Wang B, Zhang H, Zhang S, Li Z. DNMT3A and DNMT3B in breast tumorigenesis and potential therapy. Front Cell Dev Biol 2022;10:916725. google scholar
  • Lv M, Zhong Z, Huang M, Tian Q, Jiang R, Chen J. lncRNA H19 regulates epithelial–mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta Mol Cell Res 2017;1864(10):1887-99. google scholar
  • Yan B, Guo Q, Nan XX, Wang Z, Yin Z, Yi L, et al. MicroRNA-29b inhibits cell proliferation and invasion and enhances apoptosis and chemotherapy effects of cisplatin via targeting of DNMT3b and AKT3 in prostate cancer. Onco Targets Ther 2015;8:557-65. google scholar
  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014;42(D1):D92-7. google scholar
  • Singh N, Ramnarine VR, Song JH, Pandey R, Padi SKR, Nouri M, et al. The long noncoding RNA H19 regulates tumor plasticity in prostate cancer. Nat Commun 2021;12:7349. google scholar
  • Liu L, Liu L, Lu S. lncRNA H19 promotes viability and epithelial–mesenchymal transition of lung adenocarcinoma cells by targeting miR-29b-3p and modifying STAT3. Int J Oncol 2019;54(3):929-41. google scholar
  • Ren X, Liu G, Zhou J. Nuclear-activating miRNAs: unveiling the intricacies of subcellular miRNA function and regulation in cancer and immunity disease. Cancer Cell Int 2025;25(1):147. google scholar
  • Sur S, Steele R, Ray RB. miRNA-29b inhibits prostate tumor growth (in vivo). Cells 2019;8:1455. google scholar
  • Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, et al. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. Naunyn Schmiedebergs Arch Pharmacol 2025;398:1-20. google scholar
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 2016;17:272-83. google scholar
  • Zhang X, Wang G, Li X, Liu Y, Wu X, Zhou Y, et al. LncRNA H19 promotes gastric cancer metastasis via miR-148-3p/SOX-12 axis. Anal Cell Pathol 2024;2024(1):6217134. google scholar
  • El Sayed SR, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel) 2021;13(11):2680. google scholar
There are 18 citations in total.

Details

Primary Language English
Subjects Clinical Oncology
Journal Section Research Article
Authors

Servet Tunoğlu 0000-0001-7625-7425

Gamze Nur Öter 0000-0001-8687-2034

Sevda Tanrıkulu Küçük 0000-0001-9446-4399

Publication Date October 28, 2025
Submission Date August 18, 2025
Acceptance Date September 3, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

MLA Tunoğlu, Servet et al. “Expression Profiles of LncRNA H19 and MiR-29b-3p in Prostate Cancer Cell Lines”. Journal of Advanced Research in Health Sciences, vol. 8, no. 3, 2025, pp. 157-62, doi:10.26650/JARHS2025-1765794.