Araştırma Makalesi
BibTex RIS Kaynak Göster

Fen Bilgisi Öğretmen Adaylarının Newton’un Hareket Yasalarındaki Deklaratif Bilgi Durumlarına, Prosedürlerin ve Matematik Mantık Bilgi Durumlarının Etkisinin İncelenmesi

Yıl 2012, Cilt: 23 Sayı: 23, 121 - 140, 30.01.2014

Öz

Bu araştırmada; fen bilgisi öğretmen adaylarının Newton’un hareket yasalarındaki deklaratif bilgi ve başarı düzeylerine, matematik mantık bilgi ve başarı düzeylerinin etkisine odaklanılmaktadır. Ayrıca bu araştırmada fen bilgisi öğretmen adaylarının Newton’un hareket yasalarındaki deklaratif bilgi ve başarı düzeylerine, prosedür başarı düzeylerinin etkisene de odaklanılmaktadır. Bu araştırmada, öğretmen adaylarının bilgi düzeylerinin, başarı düzeylerini yeterince desteklemediği sonucuna ulaşılmıştır. Ayrıca prosedür başarı düzeyleri, konu başarı düzeyini desteklemesinin oldukça sınırlı olduğu sonucunu ulaşılmıştır. Bu araştırmada NÖA2 başarı düzeyinin, formül bilgi düzeyine göre yüksek olması, sorunun/çözümün semantik yanı ile ilgili olduğuna işaret etmektedir. Bu araştırmanın bulgularına doğrultusunda; eğitimi sürekli, yöntemlere angaja etmekle iyi bir eğitim sağlanamayabileceğini gösterdiği söylenebilir. Eğitim süreçlerimizi çeşitlendirmenin faydalı olma ihtimali, faydalı olmama ihtimalinden yüksektir. Semiotik bilimi’de eğitim süreçlerine dahil etmeliyiz ki, öğretmen adaylarının anlama süreçlerine gerektiği gibi katkı verilebilsin. Semiotik bilimin bir parçasını oluşturan “semantik”; bu araştırmada tartışılan “formül değişkeninin bilgi düzeyiyle”-“prosedür başarı düzeylerinin” ilişkilendirilmesi, öğretim süreçleriyle bire bir ilişkilendirilebilir.

Kaynakça

  • Anderson, J. R. (1983). The Architecture of Cognition, Cambridge, MA: Harvard University Press.
  • Anderson, J. R. (1993). Rules of The Mind, Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
  • Anderson, J. R. (1995). Cognitive Psychology and Its Implications, Fourth Edition, W. H. Freeman and Company, New York, p: 234.
  • Andre, T. and Ding, P. (1991). Student Misconceptions, Declarative Knowledge, Stimulus Conditions and Problem Solving in Basic Electricity, Contemporary Educational Psychology, 16(4), 303-313.
  • Baumard, P. (1999). Tacit Knowledge in Organizations, Sage Publication, London, pp. 62-98.
  • Berge, T. T. and Hezewijk, R. V. (1999). Procedural and Declarative Knowledge: An Evolutionary Perspective, Theory and Psychology, 9(5), 605-624.
  • Bonner, A. J. and Kifer M. (1993). Transaction Logic: Unifying Declarative and Procedural Knowledge (Extended Abstract), AAAI Technical Report FS- 93-01, 17-25.
  • Corcoran, J. (2003). Aristotle’s Prior Analytics and Boole’s Laws of Thought, History and Philosophy of Logic, 24(4), 261-288.
  • Dacin, P. A. and Mitchell, A. A. (1986). The Measurement of Declarative Knowledge, Advances in Consumer Research, 13, 454-459.
  • Drummond, S. R., Hernandez, G., Velez, M. and Villagran, G. (1998). Cooperative Learning and The Appropriation of Procedural Knowledge by Primary School Children, Learning and Instruction, 8(1), 37-61.
  • Garzas, J. and Piattini, M. (2007). An Ontology for Understanding and Applying Object-Oriented Design Knowledge, International Journal of Software Engineering and Knowledge Engineering, 17(3), 407-421.
  • Good, R., Herron, J. D., Lawson, A. E. and Renner, J. W. (1985). The Domain of Science Education, Science Education, 69(2), 139-141.
  • Gözkan, H. B. (2008). Aritmetiğin Temelleri, YKY, İstanbul, pp. 180-185.
  • Haeussler, E.F. and Paul R. S. (1993). Ekonomi ve Işletme Öğrencileri Için Matematiksel Analize Giriş, Türkçesi: Çakır, H. ve Öztürk, A., İstanbul, Ekin Kitabevi Yayınları, pp: 3-14.
  • Hanisch, K. A., Kramer, A. F. and Hulin, C. L. (1991). Cognitive Representations, Control and Understanding of Complex Systems: A Field Study Focusing on Components of Users’ Mental Models and Expert/Novice Differences, Ergonomics, 34(8), 1129-1145.
  • Hao, T., Li, H. and Wenyin, L. (2007). Acquiring Procedural Knowledge from Historical Text, Third International Conference on Semantics, Knowledge and Grid, 491-494.
  • Heijenoort J. (1970). Frege and Gödel Two Fundamental Texts in Mathematical Logic, Harvard University Press, Cambridge, pp. 1-2.
  • Howe, C., Tolmie, A., Tanner, V. D. and Rattray, C. (2000). Hypothesis Testing in Science: Group Consensus and The Acquisition of Conceptual and Procedural Knowledge, Learning and Instruction, 10(4), 361-391.
  • Johnson, B. R. and Star, J. R. (2007). Does Comparing Solution Methods Facilitate Conceptual and Procedural Knowledge? An Experimental Study on Learning to Solve Equations, Journal of Educational Psychology, 99(3), 561-574.
  • Kamouri, A. L., Kamouri, J. and Smith, K. H. (1986). Training by Exploration: Facilitating The Transfer of Procedural Knowledge Through Analogical Reasoning, International Journal of Man-Machine Studies, 24(2), 171- 192.
  • Karakaş, H. I. (2001). Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar. Ankara, METÜ Press, p: 100.
  • of Procedural Knowledge, Journal of Experimental Psychology, 15(6), 1047-1060.
  • Yılmaz, I. (2011). Fen Bilgisi Öğretmen Adaylarının Newton’un Hareket Yasalarını Öğrenmelerinde Kurallı Bilgiden Açıklayıcı Bilgiye Geçişte Karşılaştıkları Problemlerin İncelenmesi (Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara, 414012. http://tez2.yok.gov.tr/
  • Yılmaz, İ. (2012). A Study On Prospective Science Teachers’ Knowledge and Achievement Levels in Mathematical Logic in Electricity-Related Subjects, Journal of International Education Research, 8(4), in Press
  • Yılmaz, I. and Yalçın, N. (2011). Probability and Possibility Calculation Statistics for Data Variables (VDOIHI); Statistical Methods for Combined Stage Percentage Calculation, International Online Journal of Educational Sciences, http://www.Iojes.net//userfiles/article/IOJES_550.pdf 3 (3), 957-979.
  • Yılmaz, İ. and Yalçın, N. (2012). Mathematical Logic Knowledge of Science Teacher Candidates in Newton’s Laws of Motion, International Journal of Applied Science and Technology, 2(3), 99-105.
  • Yılmaz, İ. and Yalçın, N. (2012). The Relationship of Procedural and Declarative Knowledge of Science Teacher Candidates in Newton’s Laws of Motion to Understanding, American International Journal of Contemporary Research, 2(3), 50-56.

The effect of Prospective Science Teachers’ Achievement Levels in Procedures and Mathematical Logic Knowledge on their Declarative Knowledge about Newton’s Laws of Motion

Yıl 2012, Cilt: 23 Sayı: 23, 121 - 140, 30.01.2014

Öz

The present paper is focused on the effect of prospective science teachers’ knowledge and achievement levels in mathematical logic on their declarative knowledge and achievement levels in Newton’s laws of motion. In addition, it focuses on the effect of their achievement level in procedures on their declarative knowledge and achievement levels in Newton’s laws of motion. In the study, the procedures required by the students for the subjects about declarative knowledge were measured through two independent measurement tools. These are the QMT2 and QMT3 that measured the procedures for formulas and the procedures for basic math respectively. It was concluded that the students’ knowledge level does not support their achievement level in a satisfactory way. Furthermore, it was discovered that their achievement level in the procedures support their achievement level in the subjects in a limited way. Their achievement level in the QMT2 was higher than their knowledge level in formulas, which is related to the semantic aspect of the problem/solution. Incorporating methods into education in a constant manner does not necessarily mean that a decent kind of education will be achieved. Diversification of educational processes is more likely to be useful than not to be useful. Educational processes should also include semiotics so that students are enabled to make contributions to the process by which they comprehend things. Semiotics is linked with the variable “formula”. Learning semiotic structures of formulas will result in an increase in students’ knowledge level in this variable.

Kaynakça

  • Anderson, J. R. (1983). The Architecture of Cognition, Cambridge, MA: Harvard University Press.
  • Anderson, J. R. (1993). Rules of The Mind, Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
  • Anderson, J. R. (1995). Cognitive Psychology and Its Implications, Fourth Edition, W. H. Freeman and Company, New York, p: 234.
  • Andre, T. and Ding, P. (1991). Student Misconceptions, Declarative Knowledge, Stimulus Conditions and Problem Solving in Basic Electricity, Contemporary Educational Psychology, 16(4), 303-313.
  • Baumard, P. (1999). Tacit Knowledge in Organizations, Sage Publication, London, pp. 62-98.
  • Berge, T. T. and Hezewijk, R. V. (1999). Procedural and Declarative Knowledge: An Evolutionary Perspective, Theory and Psychology, 9(5), 605-624.
  • Bonner, A. J. and Kifer M. (1993). Transaction Logic: Unifying Declarative and Procedural Knowledge (Extended Abstract), AAAI Technical Report FS- 93-01, 17-25.
  • Corcoran, J. (2003). Aristotle’s Prior Analytics and Boole’s Laws of Thought, History and Philosophy of Logic, 24(4), 261-288.
  • Dacin, P. A. and Mitchell, A. A. (1986). The Measurement of Declarative Knowledge, Advances in Consumer Research, 13, 454-459.
  • Drummond, S. R., Hernandez, G., Velez, M. and Villagran, G. (1998). Cooperative Learning and The Appropriation of Procedural Knowledge by Primary School Children, Learning and Instruction, 8(1), 37-61.
  • Garzas, J. and Piattini, M. (2007). An Ontology for Understanding and Applying Object-Oriented Design Knowledge, International Journal of Software Engineering and Knowledge Engineering, 17(3), 407-421.
  • Good, R., Herron, J. D., Lawson, A. E. and Renner, J. W. (1985). The Domain of Science Education, Science Education, 69(2), 139-141.
  • Gözkan, H. B. (2008). Aritmetiğin Temelleri, YKY, İstanbul, pp. 180-185.
  • Haeussler, E.F. and Paul R. S. (1993). Ekonomi ve Işletme Öğrencileri Için Matematiksel Analize Giriş, Türkçesi: Çakır, H. ve Öztürk, A., İstanbul, Ekin Kitabevi Yayınları, pp: 3-14.
  • Hanisch, K. A., Kramer, A. F. and Hulin, C. L. (1991). Cognitive Representations, Control and Understanding of Complex Systems: A Field Study Focusing on Components of Users’ Mental Models and Expert/Novice Differences, Ergonomics, 34(8), 1129-1145.
  • Hao, T., Li, H. and Wenyin, L. (2007). Acquiring Procedural Knowledge from Historical Text, Third International Conference on Semantics, Knowledge and Grid, 491-494.
  • Heijenoort J. (1970). Frege and Gödel Two Fundamental Texts in Mathematical Logic, Harvard University Press, Cambridge, pp. 1-2.
  • Howe, C., Tolmie, A., Tanner, V. D. and Rattray, C. (2000). Hypothesis Testing in Science: Group Consensus and The Acquisition of Conceptual and Procedural Knowledge, Learning and Instruction, 10(4), 361-391.
  • Johnson, B. R. and Star, J. R. (2007). Does Comparing Solution Methods Facilitate Conceptual and Procedural Knowledge? An Experimental Study on Learning to Solve Equations, Journal of Educational Psychology, 99(3), 561-574.
  • Kamouri, A. L., Kamouri, J. and Smith, K. H. (1986). Training by Exploration: Facilitating The Transfer of Procedural Knowledge Through Analogical Reasoning, International Journal of Man-Machine Studies, 24(2), 171- 192.
  • Karakaş, H. I. (2001). Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar. Ankara, METÜ Press, p: 100.
  • of Procedural Knowledge, Journal of Experimental Psychology, 15(6), 1047-1060.
  • Yılmaz, I. (2011). Fen Bilgisi Öğretmen Adaylarının Newton’un Hareket Yasalarını Öğrenmelerinde Kurallı Bilgiden Açıklayıcı Bilgiye Geçişte Karşılaştıkları Problemlerin İncelenmesi (Yayınlanmamış Doktora Tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara, 414012. http://tez2.yok.gov.tr/
  • Yılmaz, İ. (2012). A Study On Prospective Science Teachers’ Knowledge and Achievement Levels in Mathematical Logic in Electricity-Related Subjects, Journal of International Education Research, 8(4), in Press
  • Yılmaz, I. and Yalçın, N. (2011). Probability and Possibility Calculation Statistics for Data Variables (VDOIHI); Statistical Methods for Combined Stage Percentage Calculation, International Online Journal of Educational Sciences, http://www.Iojes.net//userfiles/article/IOJES_550.pdf 3 (3), 957-979.
  • Yılmaz, İ. and Yalçın, N. (2012). Mathematical Logic Knowledge of Science Teacher Candidates in Newton’s Laws of Motion, International Journal of Applied Science and Technology, 2(3), 99-105.
  • Yılmaz, İ. and Yalçın, N. (2012). The Relationship of Procedural and Declarative Knowledge of Science Teacher Candidates in Newton’s Laws of Motion to Understanding, American International Journal of Contemporary Research, 2(3), 50-56.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

İsmail Yılmaz Bu kişi benim

Necati Yalçın Bu kişi benim

Yayımlanma Tarihi 30 Ocak 2014
Gönderilme Tarihi 30 Ocak 2014
Yayımlandığı Sayı Yıl 2012 Cilt: 23 Sayı: 23

Kaynak Göster

APA Yılmaz, İ., & Yalçın, N. (2014). The effect of Prospective Science Teachers’ Achievement Levels in Procedures and Mathematical Logic Knowledge on their Declarative Knowledge about Newton’s Laws of Motion. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, 23(23), 121-140.