Research Article
BibTex RIS Cite

Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility

Year 2025, Volume: 29 Issue: 5, 498 - 509, 27.10.2025
https://doi.org/10.16984/saufenbilder.1702047

Abstract

In the present work, novel thermoresponsive hydrogels were developed from renewable resources, and the influence of bacterial cellulose molar ratio on their chemical structure, thermal properties, swelling behavior, morphology, and biocompatibility was systematically investigated. The hydrogels were fabricated using castor oil, 4,4'-diphenylmethane diisocyanate, bacterial cellulose, N-isopropylacrylamide, and N,N'-Methylenebisacrylamide. Structural and physicochemical characterizations were performed by Fourier-transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. The highest equilibrated swelling degree was achieved as 592.6% at the maximum bacterial cellulose content. SEM images revealed that the formation of spongy architecture is caused by the increase in the bacterial cellulose content. In vitro biocompatibility studies revealed that the hydrogel with the highest bacterial cellulose content exhibited the greatest cytocompatibility, with an IC50 value of 11.16 mg/ml. Overall, the findings demonstrate the successful fabrication of a novel bio-based thermoresponsive hydrogel through an eco-friendly approach, highlighting its potential for diverse biomedical applications.

Project Number

FEN-C-DRP-170118-0011

Thanks

Authors wish to acknowledge the ArelPOTKAM Team for carrying out the characterization studies. The authors are also grateful to Mehmet Kıranşal and Beyza Kaba for their help with performing MTT assays.

References

  • S. Bucatariu, G. Fundueanu, I. Prisacaru, M. Balan, I. Stoica, “Synthesis and characterization of thermosensitive poly (N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery,” Journal of Polymer Research, vol. 21, pp. 580, 2014.
  • N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, “Stimuli-responsive hydrogels in drug delivery and tissue engineering,” Drug Delivery, vol. 23, no. 3, pp. 748–777, 2016.
  • D. Althans, P. Schrader, S. Enders, “Solubilisation of quercetin: Comparison of hyperbranched polymer and hydrogel,” Journal of Molecular Liquids, vol. 196, pp. 86–93, 2014.
  • Q. Wang, Z. Dong, Y. Du, J. F. Kennedy, “Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films,” Carbohydrate Polymers, vol. 69, no. 2, pp. 336–343, 2007.
  • F. Käfer, F. Liu, U. Stahlschmidt, V. Jérôme, R. Freitag, “LCST and UCST in one: Double thermoresponsive behavior of block copolymers of poly (ethylene glycol) and poly (acrylamide-co-acrylonitrile),” Langmuir, vol. 31, no. 32, pp. 8940–8946, 2015.
  • L. Klouda, “Thermoresponsive hydrogels in biomedical applications: A seven-year update,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 97, pp. 338–349, 2015.
  • B. Özkahraman, I. Acar, G. Güçlü, “Synthesis and characterization of poly (VCL-HEA-IA) terpolymer for drug release applications,” Journal of Polymer Materials, vol. 33, no. 2, pp. 351–363, 2016.
  • M. Cao, Y. Wang, X. Hu, H. Gong, R. Li, “Reversible thermoresponsive peptide–PNIPAM hydrogels for controlled drug delivery,” Biomacromolecules, vol. 20, no. 9, pp. 3601–3610, 2019.
  • E. M. Frazar, R. A. Shah, T. D. Dziubla, J. Z. Hilt, “Multifunctional temperature‐responsive polymers as advanced biomaterials and beyond,” Journal of Applied Polymer Science, vol. 137, no. 25, pp. 48770, 2020.
  • G. Fundueanu, M. Constantin, S. Bucatariu, P. Ascenzi, “Poly (N-isopropylacrylamide-co-N-vinylpyrrolidone) thermoresponsive microspheres: The low drug loading ensures the pulsatile release mechanism,” Express Polymer Letters, vol. 14, no. 1, pp. 63–76, 2020.
  • J. H. Park, J. W. Jang, J. H. Sim, I. J. Kim, D. J. Lee, “Preparation and properties of thermoresponsive P (N-Isopropylacrylamide-co-butylacrylate) hydrogel materials for smart windows,” International Journal of Polymer Science, 3824207, 2019.
  • A. Onaciu, R. A. Munteanu, A. I. Moldovan, C. S. Moldovan, I. Berindan-Neagoe, “Hydrogels based drug delivery synthesis, characterization and administration,” Pharmaceutics, vol. 11, no. 9, pp. 432, 2019.
  • L. Etchenausia, E. Villar-Alvarez, J. Forcada, M. Save, P. Taboada, “Evaluation of cationic core-shell thermoresponsive poly (N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers,” Materials Science and Engineering C, vol. 104, 109871, 2019.
  • S. Durkut, Y. M. Elçin, “Synthesis and Characterization of thermosensitive poly (n‐vinyl caprolactam)‐grafted‐aminated alginate hydrogels,” Macromolecular Chemistry and Physics, vol. 221, no. 2, 1900412, 2020.
  • S. Das, P. Pandey, S. Mohanty, S. K. Nayak, “Insight on castor oil based polyurethane and nanocomposites: Recent trends and development,” Polymer-Plastics Technology and Materials, vol. 56, no. 14, pp. 1556–1585, 2017.
  • S. Ibrahim, A. Ahmad, N. S. Mohamed, “Synthesis and characterization of castor oil-based polyurethane for potential application as host in polymer electrolytes,” Bulletin of Materials Science, vol. 38, pp. 1155–1161, 2015.
  • F. Esa, S. M. Tasirin, N. A. Rahman, “Overview of bacterial cellulose production and application,” Agriculture and Agricultural Science Procedia, vol. 2, pp. 113–119, 2014.
  • D. Lin, P. Lopez-Sanchez, R. Li, Z. Li, “Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source,” Bioresource Technology, vol. 151, pp. 113–119, 2014.
  • W. K. Czaja, D. J. Young, M. Kawecki, R. M. Brown, “The future prospects of microbial cellulose in biomedical applications,” Biomacromolecules, vol. 8, no. 1, pp. 1–12, 2007.
  • A. Akoğlu, A. G. Karahan, M. L. Çakmakçı, İ. Çakır, “Bakteriyel selülozun özellikleri ve gıda sanayisinde kullanımı,” Gıda, vol. 35, no. 2, pp. 127–134, 2010.
  • J. Kucińska-Lipka, I. Gubanska, H. Janik, “Bacterial cellulose in the field of wound healing and regenerative medicine of skin: Recent trends and future prospectives,” Polymer Bulletin, vol. 72, pp. 2399–2419, 2015.
  • R. Alosmanov, K. Wolski, S. Zapotoczny, “Grafting of thermosensitive poly (N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability,” Cellulose, vol. 24, pp. 285–293, 2017.
  • Q. Wang, T. A. Asoh, H. Uyama, “Rapid uniaxial actuation of layered bacterial cellulose/poly (N-isopropylacrylamide) composite hydrogel with high mechanical strength,” RSC Advances, vol. 8, no. 23, pp. 12608–12613, 2018.
  • J. E. Arikibe, R. Lata, K. Kuboyama, T. Ougizawa, D. Rohindra, “pH‐responsive studies of bacterial cellulose/chitosan hydrogels crosslinked with Genipin: Swelling and drug release behaviour,” ChemistrySelect, vol. 4, no. 34, pp. 9915–9926, 2019.
  • P. Basu, N. Saha, P. Saha, “Swelling and rheological study of calcium phosphate filled bacterial cellulose‐based hydrogel scaffold,” Journal of Applied Polymer Science, vol. 137, no. 14, 48522, 2019.
  • N. L. Parada Hernandez, J. O. Bahú, M. I. R. Schiavon, A. J. Bonon, C. I. Benites, “(Epoxidized castor oil–citric acid) copolyester as a candidate polymer for biomedical applications,” Journal of Polymer Research, vol. 26, pp. 149, 2019.
  • S. Arévalo-Alquichire, C. Ramírez, L. Andrade, Y. Uscategui, L. E. Diaz, “Polyurethanes from modified castor oil and chitosan: Synthesis, characterization, in vitro degradation, and cytotoxicity,” Journal of Elastomers and Plastics, vol. 50, no. 5, pp. 419–434, 2018.
  • E. Isikci Koca, G. Bozdag, G. Cayli, D. Kazan, P. Cakir Hatir, “Thermoresponsive hydrogels based on renewable resources,” Journal of Applied Polymer Science, vol. 137, no. 28, 48861, 2020.
  • S. A. Hutchens, R. V. Leon, H. M. O’Neill, B. R. Evans, “Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production,” Letters in Applied Microbiology, vol. 44, no. 2, pp. 175–180, 2007.
  • H. K. Uzyol, M. T. Saçan, “Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose,” Environmental Science and Pollution Research, vol. 24, pp. 11154–11162, 2017.
  • T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1–2, pp. 55–63, 1983.
  • M. T. Luo, H. L. Li, C. Huang, H. R. Zhang, L. Xiong, “Cellulose-based absorbent production from bacterial cellulose and acrylic acid: Synthesis and performance,” Polymers, vol. 10, no. 7, pp. 702, 2018.
  • F. D. S. Moura Neto, A. C. V. Fialho, W. L. Moura, A. G. F. Rosa, J. M. Matos, “Castor polyurethane used as osteosynthesis plates: Microstructural and thermal analysis,” Polímeros, vol. 29, no. 2, e2019029, 2019.
  • M. A. Alaa, K. Yusoh, S. F. Hasany, “Pure polyurethane and castor oil-based polyurethane: Synthesis and characterization,” Journal of Mechanical Engineering Sciences, vol. 8, pp. 1507–1515, 2015.
  • Q. Lin, Y. Zheng, L. Ren, J. Wu, H. Wang, “Preparation and characteristic of a sodium alginate/carboxymethylated bacterial cellulose composite with a crosslinking semi‐interpenetrating network,” Journal of Applied Polymer Science, vol. 131, no. 3, 39848, 2014.
  • M. Faria, C. Vilela, F. Mohammadkazemi, A. J. Silvestre, C. S. Freire, “Poly (glycidyl methacrylate)/bacterial cellulose nanocomposites: Preparation, characterization and post-modification,” International Journal of Biological Macromolecules, vol. 127, pp. 618–627, 2019.
  • W. Liu, H. Du, T. Zheng, C. Si, “Biomedical applications of bacterial cellulose-based composite hydrogels,” Current Medicinal Chemistry, vol. 28, no. 40, pp. 8319–8332, 2021.
  • B. He, X. Liu, S. Qi, R. Zheng, M. Chang, “A review of water-resistant cellulose-based materials in pharmaceutical and biomedical application,” Current Medicinal Chemistry, vol. 28, no. 40, pp. 8296–8318, 2021.
  • F. G. Torres, S. Commeaux, O. P. Troncoso, “Biocompatibility of bacterial cellulose-based biomaterials,” Journal of Functional Biomaterials, vol. 3, no. 4, pp. 864–878, 2012.
  • P. R. F. D. S. Moraes, S. Saska, H. Barud, L. R. D. S. Lima, V. D. C. A. Martins, “Bacterial cellulose/collagen hydrogel for wound healing,” Materials Research, vol. 19, pp. 106–116, 2016.
  • Y. Han, C. Li, Q. Cai, X. Bao, L. Tang, “Studies on bacterial cellulose/poly (vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma,” Biomedical Materials, vol. 15, no. 3, 035022, 2020.
There are 41 citations in total.

Details

Primary Language English
Subjects Organic Chemistry (Other)
Journal Section Research Articles
Authors

Elif Işıkçı Koca 0000-0002-2636-1467

Orkun Pinar 0000-0001-9133-3502

Özlem Yalçın Çapan 0000-0002-7511-3355

Gökhan Çaylı 0000-0002-3395-5642

Dilek Kazan 0000-0002-0764-8876

Pinar Cakir Hatir 0000-0002-3806-7118

Project Number FEN-C-DRP-170118-0011
Early Pub Date October 21, 2025
Publication Date October 27, 2025
Submission Date May 20, 2025
Acceptance Date August 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Işıkçı Koca, E., Pinar, O., Yalçın Çapan, Ö., … Çaylı, G. (2025). Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility. Sakarya University Journal of Science, 29(5), 498-509. https://doi.org/10.16984/saufenbilder.1702047
AMA Işıkçı Koca E, Pinar O, Yalçın Çapan Ö, Çaylı G, Kazan D, Cakir Hatir P. Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility. SAUJS. October 2025;29(5):498-509. doi:10.16984/saufenbilder.1702047
Chicago Işıkçı Koca, Elif, Orkun Pinar, Özlem Yalçın Çapan, Gökhan Çaylı, Dilek Kazan, and Pinar Cakir Hatir. “Eco-Friendly Bacterial Cellulose Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility”. Sakarya University Journal of Science 29, no. 5 (October 2025): 498-509. https://doi.org/10.16984/saufenbilder.1702047.
EndNote Işıkçı Koca E, Pinar O, Yalçın Çapan Ö, Çaylı G, Kazan D, Cakir Hatir P (October 1, 2025) Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility. Sakarya University Journal of Science 29 5 498–509.
IEEE E. Işıkçı Koca, O. Pinar, Ö. Yalçın Çapan, G. Çaylı, D. Kazan, and P. Cakir Hatir, “Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility”, SAUJS, vol. 29, no. 5, pp. 498–509, 2025, doi: 10.16984/saufenbilder.1702047.
ISNAD Işıkçı Koca, Elif et al. “Eco-Friendly Bacterial Cellulose Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility”. Sakarya University Journal of Science 29/5 (October2025), 498-509. https://doi.org/10.16984/saufenbilder.1702047.
JAMA Işıkçı Koca E, Pinar O, Yalçın Çapan Ö, Çaylı G, Kazan D, Cakir Hatir P. Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility. SAUJS. 2025;29:498–509.
MLA Işıkçı Koca, Elif et al. “Eco-Friendly Bacterial Cellulose Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility”. Sakarya University Journal of Science, vol. 29, no. 5, 2025, pp. 498-09, doi:10.16984/saufenbilder.1702047.
Vancouver Işıkçı Koca E, Pinar O, Yalçın Çapan Ö, Çaylı G, Kazan D, Cakir Hatir P. Eco-friendly Bacterial Cellulose/Castor Oil Hydrogels: Physicochemical Behavior and Biocompatibility. SAUJS. 2025;29(5):498-509.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255    33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .