Derleme
BibTex RIS Kaynak Göster

Intermittent Fasting Metabolism, Body Composition, Sport and Exercise Performance Interaction: Traditional Review

Yıl 2025, Cilt: 36 Sayı: 2, 148 - 161, 30.06.2025
https://doi.org/10.17644/sbd.1703172

Öz

Nowadays, intermittent fasting (IF) has gained significant attention for its role in promoting metabolic adaptations, facilitating weight loss, and influencing body composition. Various fasting regimens exist, broadly classified under the umbrella of IF. IF can be categorized into two primary approaches: (1) weekly fasting protocols, such as the 5:2 diet (involving two days of complete fasting or a 25% calorie intake) and alternate-day fasting (ADF); and (2) daily fasting protocols, including time-restricted feeding (TRF), which structures eating within specific time windows. The health benefits of IF stem from metabolic regulation, circadian rhythm alignment, modulation of the gut microbiota, and lifestyle changes. Research indicates IF positively influences body composition, leading to reductions in fat mass over periods ranging from four weeks to 14 months. While body composition changes require longer durations, metabolic improvements can emerge even in short-term implementations. Studies have documented reductions in blood glucose levels, hemoglobin A1C (HbA1C), cholesterol, and ghrelin, alongside increases in ketone levels, insulin sensitivity, cardiometabolic health, brain-derived neurotrophic factor (BDNF), and mechanistic target of rapamycin (mTOR) expression. Investigations into the combination of IF with aerobic and resistance training suggest that while IF does not provide additional benefits for athletic performance, it significantly enhances body composition and metabolic health parameters. In summary, although IF may not directly enhance sports performance, it remains a highly effective dietary strategy for optimizing body composition and metabolic health in both sedentary individuals and athletes despite having potential challenges related to adherence. IF is considered as a practical and efficient nutritional approach.

Kaynakça

  • Anton, S. D., Lee, S. A., Donahoo, W. T., McLaren, C., Manini, T., Leeuwenburgh, C., ve Pahor, M. (2019). The effects of time restricted feeding on overweight, older adults: A pilot study. Nutrients, 11(7), 1500. doi:10.3390/nu11071500
  • Anton, S. D., Moehl, K., Donahoo, W. T., Marosi, K., Lee, S. A., Mainous, A. G. 3rd, Leeuwenburgh, C. ve Mattson, M. P. (2018). Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity, 26(2), 254-268. doi:10.1002/oby.22065
  • Antoni, R., Johnston, K. L., Collins, A. L., ve Robertson, M. D. (2018). Intermittent v. continuous energy restriction: Differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. British Journal of Nutrition, 119(5), 507-516. doi:10.1017/s0007114517003890
  • Antoni, R., Robertson, T. M., Robertson, M. D., ve Johnston, J. D. (2018). A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. Journal of Nutritional Science, 7.
  • Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H., ve Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity, 17(11), 2100-2102. doi:10.1038/oby.2009.264
  • Barnosky, A. R., Hoddy, K. K., Unterman, T. G., ve Varady, K. A. (2014). Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Translational Research, 164(4), 302-311. doi:10.1016/j.trsl.2014.05.013
  • Bhutani, S., Klempel, M. C., Kroeger, C. M., Trepanowski, J. F., ve Varady, K. A. (2013). Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity, 21(7), 1370-1379. doi:10.1002/oby.20353
  • Brady, A. J., Langton, H. M., Mulligan, M., ve Egan, B. (2021). Effects of 8 wk of 16:8 time-restricted eating in male middle- and long-distance runners. Medicine & Science in Sports & Exercise, 53(3), 633-642. doi:10.1249/mss.0000000000002488
  • Carter, S., Clifton, P. M., ve Keogh, J. B. (2018). Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: A randomized noninferiority trial. JAMA Network Open, 1(3), e180756. doi:10.1001/jamanetworkopen.2018.0756
  • Challet, E. (2013). Circadian clocks, food intake, and metabolism. Progress in Molecular Biology and Translational Science, 119, 105-135. doi:10.1016/b978-0-12-396971-2.00005-1
  • Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., Lin, S., Kim, Y., Menon, V. ve Varady, K. A. (2020). Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: A randomized controlled trial in adults with obesity. Cell Metabolism, 32(3), 366-378.e363. doi:10.1016/j.cmet.2020.06.018
  • Collier, R. (2013). Intermittent fasting: the next big weight loss fad. CMAJ, 185(8), E321-322. doi:10.1503/cmaj.109-4437
  • Correia, J. M., Santos, I., Pezarat-Correia, P., Minderico, C., Schoenfeld, B. J., ve Mendonca, G. V. (2021). Effects of time-restricted feeding on supramaximal exercise performance and body composition: A randomized and counterbalanced crossover study in healthy men. International Journal of Environmental Research and Public Health, 18(14):7227. doi:10.3390/ijerph18147227
  • Coutinho, S. R., Halset, E. H., Gåsbakk, S., Rehfeld, J. F., Kulseng, B., Truby, H., ve Martins, C. (2018). Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial. Clinical Nutrition, 37(3), 815-823. doi:10.1016/j.clnu.2017.04.002
  • Ekmekcioglu, C., ve Touitou, Y. (2011). Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obesity Reviews, 12(1), 14-25. doi:10.1111/j.1467-789X.2010.00716.x
  • Eshghinia, S., ve Gapparov, M. G. (2011). Effect of short-term modified alternate-day fasting on the lipid metabolism in obese women. Iranian Journal of Diabetes & Obesity (IJDO), 3(1).
  • Eshghinia, S., ve Mohammadzadeh, F. (2013). The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. Journal of Diabetes & Metabolic Disorders, 12(1), 4. doi:10.1186/2251-6581-12-4
  • Ezpeleta, M., Gabel, K., Cienfuegos, S., Kalam, F., Lin, S., Pavlou, V., ve Varady, K. A. (2023). Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: A randomized controlled trial. Cell Metabolism, 35(1), 56-70.e53. doi:10.1016/j.cmet.2022.12.001
  • Fanti, M., Mishra, A., Longo, V. D., ve Brandhorst, S. (2021). Time-restricted eating, intermittent fasting, and fasting-mimicking diets in weight loss. Current Obesity Reports, 10(2), 70-80. doi:10.1007/s13679-021-00424-2
  • Franz, M. J., VanWormer, J. J., Crain, A. L., Boucher, J. L., Histon, T., Caplan, W., Bowman, J. D., ve Pronk, N. P. (2007). Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. Journal of the American Dietetic Association, 107(10), 1755-1767. doi:10.1016/j.jada.2007.07.017
  • Froy, O., ve Miskin, R. (2010). Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging, 2(1), 7-27. doi:10.18632/aging.100116
  • Furmli, S., Elmasry, R., Ramos, M., ve Fung, J. (2018). Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Reports, 2018. doi:10.1136/bcr-2017-221854
  • Gabel, K., Hoddy, K. K., Haggerty, N., Song, J., Kroeger, C. M., Trepanowski, J. F., Panda, S. ve Varady, K. A. (2018). Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutrition and Healthy Aging, 4(4), 345-353. doi:10.3233/nha-170036
  • Gabel, K., Kroeger, C. M., Trepanowski, J. F., Hoddy, K. K., Cienfuegos, S., Kalam, F., ve Varady, K. A. (2019). Differential effects of alternate-day fasting versus daily calorie restriction on insulin resistance. Obesity, 27(9), 1443-1450. doi:10.1002/oby.22564
  • Gallicchio, L., ve Kalesan, B. (2009). Sleep duration and mortality: a systematic review and meta-analysis. Journal of Sleep Research, 18(2), 148-158. doi:10.1111/j.1365-2869.2008.00732.x
  • Garaulet, M., Gómez-Abellán, P., Alburquerque-Béjar, J. J., Lee, Y. C., Ordovás, J. M., ve Scheer, F. A. (2013). Timing of food intake predicts weight loss effectiveness. International Journal of Obesity, 37(4), 604-611. doi:10.1038/ijo.2012.229
  • Gill, S., ve Panda, S. (2015). A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metabolism, 22(5), 789-798. doi:10.1016/j.cmet.2015.09.005
  • Haczeyni, F., Bell-Anderson, K. S., ve Farrell, G. C. (2018). Causes and mechanisms of adipocyte enlargement and adipose expansion. Obesity Reviews, 19(3), 406-420. doi:10.1111/obr.12646
  • Haganes, K. L., Silva, C. P., Eyjólfsdóttir, S. K., Steen, S., Grindberg, M., Lydersen, S., Nygård, M., Hawley J. A. ve Moholdt, T. (2022). Time-restricted eating and exercise training improve HbA1c and body composition in women with overweight/obesity: A randomized controlled trial. Cell Metabolism, 34(10), 1457-1471.e1454. doi:10.1016/j.cmet.2022.09.003
  • Halberg, N., Henriksen, M., Söderhamn, N., Stallknecht, B., Ploug, T., Schjerling, P., ve Dela, F. (2005). Effect of intermittent fasting and refeeding on insulin action in healthy men. Journal of Applied Physiology, 99(6), 2128-2136. doi:10.1152/japplphysiol.00683.2005
  • Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., Leblanc M., Chaix A., Joens M., Fitzpatrick J.A., Ellisman M.H., ve Panda, S. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism, 15(6), 848-860. doi:10.1016/j.cmet.2012.04.019
  • Jamshed, H., Beyl, R. A., Della Manna, D. L., Yang, E. S., Ravussin, E., ve Peterson, C. M. (2019). Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients, 11(6). doi:10.3390/nu11061234
  • Jensen, M. D., Ryan, D. H., Apovian, C. M., Ard, J. D., Comuzzie, A. G., Donato, K. A., Hu, F. B., Hubbard, V. S., Jakicic, J. M., Kushner, R. F., Loria, C. M., Millen, B. E., Nonas, C. A., Pi-Sunyer, F. X., Stevens, J., Stevens, V. J., Wadden, T. A., Wolfe, B. M., Yanovski, S. Z., ... Tomaselli, G. F. (2014). 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation, 129(25 Suppl 2), S102-138. doi:10.1161/01.cir.0000437739.71477.ee
  • Johnstone, A. (2015). Fasting for weight loss: an effective strategy or latest dieting trend? International Journal of Obesity, 39(5), 727-733. doi:10.1038/ijo.2014.214
  • Klempel, M. C., Kroeger, C. M., Bhutani, S., Trepanowski, J. F., ve Varady, K. A. (2012). Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutrition Journal, 11, 98. doi:10.1186/1475-2891-11-98
  • Lichtash, C., Fung, J., Ostoich, K. C., ve Ramos, M. (2020). Therapeutic use of intermittent fasting and ketogenic diet as an alternative treatment for type 2 diabetes in a normal weight woman: a 14-month case study. BMJ Case Reports, 13(7). doi:10.1136/bcr-2019-234223
  • Longo, V. D., ve Panda, S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metabolism, 23(6), 1048-1059. doi:10.1016/j.cmet.2016.06.001
  • M. Correia, J., Santos, I., Pezarat-Correia, P., Minderico, C., ve V. Mendonca, G. (2020). Effects of intermittent fasting on specific exercise performance outcomes: A systematic review including meta-analysis. Nutrients, 12(5), 1390. doi:10.3390/nu12051390
  • MacLean, P. S., Wing, R. R., Davidson, T., Epstein, L., Goodpaster, B., Hall, K. D., Levin, B. E., Perri, M. G., Rolls, B. J., Rosenbaum, M., Rothman, A. J., ve Ryan, D. (2015). NIH working group report: Innovative research to improve maintenance of weight loss. Obesity, 23(1), 7-15. doi:10.1002/oby.20967
  • Martínez-Rodríguez, A., Rubio-Arias, J. A., García-De Frutos, J. M., Vicente-Martínez, M., ve Gunnarsson, T. P. (2021). Effect of high-intensity interval training and intermittent fasting on body composition and physical performance in active women. International Journal of Environmental Research and Public Health, 18(12). doi:10.3390/ijerph18126431
  • Mattson, M. P., Longo, V. D., ve Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing Research Reviews, 39, 46-58. doi:10.1016/j.arr.2016.10.005
  • Moro, T., Tinsley, G., Bianco, A., Marcolin, G., Pacelli, Q. F., Battaglia, G., Palma, A., Gentil, P., Neri, M., ve Paoli, A. (2016). Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. Journal of Translational Medicine, 14(1), 290. doi:10.1186/s12967-016-1044-0
  • Moro, T., Tinsley, G., Longo, G., Grigoletto, D., Bianco, A., Ferraris, C., Guglielmetti, M., Veneto, A., Tagliabue, A., Marcolin, G., ve Paoli, A. (2020). Time-restricted eating effects on performance, immune function, and body composition in elite cyclists: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 17(1), 65. doi:10.1186/s12970-020-00396-z
  • Neel, J. V. (1962). Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? American Journal of Human Genetics, 14(4), 353-362.
  • Panda, S., Hogenesch, J. B., ve Kay, S. A. (2002). Circadian rhythms from flies to human. Nature, 417(6886), 329-335. doi:10.1038/417329a
  • Parr, E. B., Devlin, B. L., Radford, B. E., ve Hawley, J. A. (2020). A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: A randomized controlled trial. Nutrients, 12(2). doi:10.3390/nu12020505
  • Parr, E. B., Heilbronn, L. K., ve Hawley, J. A. (2020). A time to eat and a time to exercise. Exercise and Sport Sciences Reviews, 48(1), 4-10. doi:10.1249/jes.0000000000000207
  • Patterson, R. E., ve Sears, D. D. (2017). Metabolic effects of intermittent fasting. Annual Review of Nutrition, 37, 371-393. doi:10.1146/annurev-nutr-071816-064634
  • Ravussin, E., Beyl, R. A., Poggiogalle, E., Hsia, D. S., ve Peterson, C. M. (2019). Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity, 27(8), 1244-1254. doi:10.1002/oby.22518
  • Razavi, R., Parvaresh, A., Abbasi, B., Yaghoobloo, K., Hassanzadeh, A., Mohammadifard, N., Clark, C. C. T., ve Morteza Safavi, S. (2021). The alternate-day fasting diet is a more effective approach than a calorie restriction diet on weight loss and hs-CRP levels. International Journal for Vitamin and Nutrition Research, 91(3-4), 242-250. doi:10.1024/0300-9831/a000623
  • Rynders, C. A., Thomas, E. A., Zaman, A., Pan, Z., Catenacci, V. A., ve Melanson, E. L. (2019). Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients, 11(10). doi:10.3390/nu11102442
  • Schiavo-Cardozo, D., Lima, M. M., Pareja, J. C., ve Geloneze, B. (2013). Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clinical Endocrinology, 79(6), 807-811. doi:10.1111/cen.12114
  • Stratton, M. T., Tinsley, G. M., Alesi, M. G., Hester, G. M., Olmos, A. A., Serafini, P. R., Modjeski, A. S., Mangine, G. T., King, K., Savage, S. N., Webb, A. T., ve VanDusseldorp, T. A. (2020). Four weeks of time-restricted feeding combined with resistance training does not differentially influence measures of body composition, muscle performance, resting energy expenditure, and blood biomarkers. Nutrients, 12(4). doi:10.3390/nu12041126
  • Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., ve Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27(6), 1212-1221.e1213. doi:10.1016/j.cmet.2018.04.010
  • Tinsley, G. M., Forsse, J. S., Butler, N. K., Paoli, A., Bane, A. A., La Bounty, P. M., Morgan G.B., ve Grandjean, P.W. (2017). Time-restricted feeding in young men performing resistance training: A randomized controlled trial. European Journal of Sport Science, 17(2), 200-207. doi:10.1080/17461391.2016.1223173
  • Tinsley, G. M., ve La Bounty, P. M. (2015). Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition Reviews, 73(10), 661-674. doi:10.1093/nutrit/nuv041
  • Tovar, A. P., Richardson, C. E., Keim, N. L., Van Loan, M. D., Davis, B. A., ve Casazza, G. A. (2021). Four weeks of 16/8 time restrictive feeding in endurance trained male runners decreases fat mass, without affecting exercise performance. Nutrients, 13(9). doi:10.3390/nu13092941
  • Trepanowski, J. F., Kroeger, C. M., Barnosky, A., Klempel, M. C., Bhutani, S., Hoddy, K. K., ve Varady, K. A. (2017). Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Internal Medicine, 177(7), 930-938. doi:10.1001/jamainternmed.2017.0936
  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., ve Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031. doi:10.1038/nature05414
  • Varady, K. A., Cienfuegos, S., Ezpeleta, M., ve Gabel, K. (2022). Clinical application of intermittent fasting for weight loss: progress and future directions. Nature Reviews Endocrinology, 18(5), 309-321. doi:10.1038/s41574-022-00638-x
  • Vasim, I., Majeed, C. N., ve DeBoer, M. D. (2022). Intermittent fasting and metabolic health. Nutrients, 14(3). doi:10.3390/nu14030631
  • WHO. (2023). Preventing noncommunicable diseases. Retrieved from https://www.who.int/activities/preventing-noncommunicable-diseases
  • Zarrinpar, A., Chaix, A., Yooseph, S., ve Panda, S. (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metabolism, 20(6), 1006-1017. doi:10.1016/j.cmet.2014.11.008
  • Zeb, F., Wu, X., Chen, L., Fatima, S., Haq, I. U., Chen, A., Majeed F., Feng Q., ve Li, M. (2020). Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. British Journal of Nutrition, 123(11), 1216-1226. doi:10.1017/s0007114519003428

Aralıklı Açlık Metabolizması, Vücut Kompozisyonu, Spor ve Egzersiz Performansı Etkileşimi: Geleneksel Derleme

Yıl 2025, Cilt: 36 Sayı: 2, 148 - 161, 30.06.2025
https://doi.org/10.17644/sbd.1703172

Öz

Son yıllarda aralıklı açlık uygulamaları oluşturduğu metabolik değişimlerle vücut ağırlığı kaybı ve olası vücut kompozisyonuna etkileri ile ön plana çıkmaktadır. Yakın zamanda pratikte kullanılan birçok açlık diyet uygulamaları bulunmasına rağmen, genel olarak bu açlık diyet uygulamaları “aralıklı açlık” genel şemsiyesi altında incelenmektedir. Aralıklı açlık ise başlıca iki kategoride incelenebilir: 1) Hafta içi açlık uygulamaları (Haftada 2 gün tam açlık ya da günlük kalori gereksinmesinin %25’i kadar kalori alımından oluşan 2 gün ve beslenmenin serbest bırakıldığı 5 gün şeklinde uygulanan 5:2 modeli ve günaşırı açlık (GA) uygulamaları 2) Gün içi açlık uygulamaları (günün belirli saatlerinde yeme periyotlarından oluşan zaman sınırlı beslenme (ZSB)). Aralıklı açlığın sağlığa dair pozitif etkileri metabolik değişim, sirkadiyen ritim, gastrointestinal mikrobiyota ve yaşam tarzı değişikliği gibi farklı mekanizmalarla açıklanabilmektedir. Aralıklı açlığın vücut kompozisyonunu olumlu yönde etkilediği, 4 haftadan 14 aya değişen sürelerde yağ kütlede azalma sağlayabildiği görülmüştür. Aralıklı açlığın vücut kompozisyonuna etkileri daha uzun sürelerde gözlemlenirken metabolik profile etkileri çok daha kısa süreli uygulamalarında dahi sağlanabilmektedir. Aralıklı açlık uygulamalarının dördüncü gününden itibaren kan glikoz düzeylerinin, hemoglobin A1C (HbA1C) seviyelerinin, kolestrol düzeyinin, ghrelin seviyelerinin azaldığı, keton düzeylerinde, insülin duyarlılığında, kardiyometabolik sağlıkta, beyin türevi nörotrofik faktör (BDNF) ve rapamisinin mekanistik hedefi (mTOR) ekspresyonunda artış sağlandığı kaydedilmiştir. Aralıklı açlık uygulamalarının aerobik ve direnç antrenmanları ile birlikte kombinasyonunun incelendiği çalışmalarda, aralıklı açlık modellerinin performans gelişiminde antrenmana ek olarak katkı sunmadığı ancak vücut kompozisyonu ve metabolik sağlık parametrelerinde daha fazla iyileşme sağladığı saptanmıştır. Özetle aralıklı açlık, performans gelişiminde etkin olmasa da sedanter ve sporcu bireylerde vücut kompozisyonu yönetimi ve metabolik sağlık belirteçleri üzerinde etkili görüldüğünden, diyete uyumda zorluk gibi sınırlılıklar olsa da önerilebilir ve etkin bir beslenme modeli olduğu düşünülmektedir.

Kaynakça

  • Anton, S. D., Lee, S. A., Donahoo, W. T., McLaren, C., Manini, T., Leeuwenburgh, C., ve Pahor, M. (2019). The effects of time restricted feeding on overweight, older adults: A pilot study. Nutrients, 11(7), 1500. doi:10.3390/nu11071500
  • Anton, S. D., Moehl, K., Donahoo, W. T., Marosi, K., Lee, S. A., Mainous, A. G. 3rd, Leeuwenburgh, C. ve Mattson, M. P. (2018). Flipping the metabolic switch: Understanding and applying the health benefits of fasting. Obesity, 26(2), 254-268. doi:10.1002/oby.22065
  • Antoni, R., Johnston, K. L., Collins, A. L., ve Robertson, M. D. (2018). Intermittent v. continuous energy restriction: Differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. British Journal of Nutrition, 119(5), 507-516. doi:10.1017/s0007114517003890
  • Antoni, R., Robertson, T. M., Robertson, M. D., ve Johnston, J. D. (2018). A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. Journal of Nutritional Science, 7.
  • Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H., ve Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity, 17(11), 2100-2102. doi:10.1038/oby.2009.264
  • Barnosky, A. R., Hoddy, K. K., Unterman, T. G., ve Varady, K. A. (2014). Intermittent fasting vs daily calorie restriction for type 2 diabetes prevention: a review of human findings. Translational Research, 164(4), 302-311. doi:10.1016/j.trsl.2014.05.013
  • Bhutani, S., Klempel, M. C., Kroeger, C. M., Trepanowski, J. F., ve Varady, K. A. (2013). Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity, 21(7), 1370-1379. doi:10.1002/oby.20353
  • Brady, A. J., Langton, H. M., Mulligan, M., ve Egan, B. (2021). Effects of 8 wk of 16:8 time-restricted eating in male middle- and long-distance runners. Medicine & Science in Sports & Exercise, 53(3), 633-642. doi:10.1249/mss.0000000000002488
  • Carter, S., Clifton, P. M., ve Keogh, J. B. (2018). Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: A randomized noninferiority trial. JAMA Network Open, 1(3), e180756. doi:10.1001/jamanetworkopen.2018.0756
  • Challet, E. (2013). Circadian clocks, food intake, and metabolism. Progress in Molecular Biology and Translational Science, 119, 105-135. doi:10.1016/b978-0-12-396971-2.00005-1
  • Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., Lin, S., Kim, Y., Menon, V. ve Varady, K. A. (2020). Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: A randomized controlled trial in adults with obesity. Cell Metabolism, 32(3), 366-378.e363. doi:10.1016/j.cmet.2020.06.018
  • Collier, R. (2013). Intermittent fasting: the next big weight loss fad. CMAJ, 185(8), E321-322. doi:10.1503/cmaj.109-4437
  • Correia, J. M., Santos, I., Pezarat-Correia, P., Minderico, C., Schoenfeld, B. J., ve Mendonca, G. V. (2021). Effects of time-restricted feeding on supramaximal exercise performance and body composition: A randomized and counterbalanced crossover study in healthy men. International Journal of Environmental Research and Public Health, 18(14):7227. doi:10.3390/ijerph18147227
  • Coutinho, S. R., Halset, E. H., Gåsbakk, S., Rehfeld, J. F., Kulseng, B., Truby, H., ve Martins, C. (2018). Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial. Clinical Nutrition, 37(3), 815-823. doi:10.1016/j.clnu.2017.04.002
  • Ekmekcioglu, C., ve Touitou, Y. (2011). Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obesity Reviews, 12(1), 14-25. doi:10.1111/j.1467-789X.2010.00716.x
  • Eshghinia, S., ve Gapparov, M. G. (2011). Effect of short-term modified alternate-day fasting on the lipid metabolism in obese women. Iranian Journal of Diabetes & Obesity (IJDO), 3(1).
  • Eshghinia, S., ve Mohammadzadeh, F. (2013). The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. Journal of Diabetes & Metabolic Disorders, 12(1), 4. doi:10.1186/2251-6581-12-4
  • Ezpeleta, M., Gabel, K., Cienfuegos, S., Kalam, F., Lin, S., Pavlou, V., ve Varady, K. A. (2023). Effect of alternate day fasting combined with aerobic exercise on non-alcoholic fatty liver disease: A randomized controlled trial. Cell Metabolism, 35(1), 56-70.e53. doi:10.1016/j.cmet.2022.12.001
  • Fanti, M., Mishra, A., Longo, V. D., ve Brandhorst, S. (2021). Time-restricted eating, intermittent fasting, and fasting-mimicking diets in weight loss. Current Obesity Reports, 10(2), 70-80. doi:10.1007/s13679-021-00424-2
  • Franz, M. J., VanWormer, J. J., Crain, A. L., Boucher, J. L., Histon, T., Caplan, W., Bowman, J. D., ve Pronk, N. P. (2007). Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. Journal of the American Dietetic Association, 107(10), 1755-1767. doi:10.1016/j.jada.2007.07.017
  • Froy, O., ve Miskin, R. (2010). Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging, 2(1), 7-27. doi:10.18632/aging.100116
  • Furmli, S., Elmasry, R., Ramos, M., ve Fung, J. (2018). Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Reports, 2018. doi:10.1136/bcr-2017-221854
  • Gabel, K., Hoddy, K. K., Haggerty, N., Song, J., Kroeger, C. M., Trepanowski, J. F., Panda, S. ve Varady, K. A. (2018). Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutrition and Healthy Aging, 4(4), 345-353. doi:10.3233/nha-170036
  • Gabel, K., Kroeger, C. M., Trepanowski, J. F., Hoddy, K. K., Cienfuegos, S., Kalam, F., ve Varady, K. A. (2019). Differential effects of alternate-day fasting versus daily calorie restriction on insulin resistance. Obesity, 27(9), 1443-1450. doi:10.1002/oby.22564
  • Gallicchio, L., ve Kalesan, B. (2009). Sleep duration and mortality: a systematic review and meta-analysis. Journal of Sleep Research, 18(2), 148-158. doi:10.1111/j.1365-2869.2008.00732.x
  • Garaulet, M., Gómez-Abellán, P., Alburquerque-Béjar, J. J., Lee, Y. C., Ordovás, J. M., ve Scheer, F. A. (2013). Timing of food intake predicts weight loss effectiveness. International Journal of Obesity, 37(4), 604-611. doi:10.1038/ijo.2012.229
  • Gill, S., ve Panda, S. (2015). A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metabolism, 22(5), 789-798. doi:10.1016/j.cmet.2015.09.005
  • Haczeyni, F., Bell-Anderson, K. S., ve Farrell, G. C. (2018). Causes and mechanisms of adipocyte enlargement and adipose expansion. Obesity Reviews, 19(3), 406-420. doi:10.1111/obr.12646
  • Haganes, K. L., Silva, C. P., Eyjólfsdóttir, S. K., Steen, S., Grindberg, M., Lydersen, S., Nygård, M., Hawley J. A. ve Moholdt, T. (2022). Time-restricted eating and exercise training improve HbA1c and body composition in women with overweight/obesity: A randomized controlled trial. Cell Metabolism, 34(10), 1457-1471.e1454. doi:10.1016/j.cmet.2022.09.003
  • Halberg, N., Henriksen, M., Söderhamn, N., Stallknecht, B., Ploug, T., Schjerling, P., ve Dela, F. (2005). Effect of intermittent fasting and refeeding on insulin action in healthy men. Journal of Applied Physiology, 99(6), 2128-2136. doi:10.1152/japplphysiol.00683.2005
  • Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., Leblanc M., Chaix A., Joens M., Fitzpatrick J.A., Ellisman M.H., ve Panda, S. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism, 15(6), 848-860. doi:10.1016/j.cmet.2012.04.019
  • Jamshed, H., Beyl, R. A., Della Manna, D. L., Yang, E. S., Ravussin, E., ve Peterson, C. M. (2019). Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients, 11(6). doi:10.3390/nu11061234
  • Jensen, M. D., Ryan, D. H., Apovian, C. M., Ard, J. D., Comuzzie, A. G., Donato, K. A., Hu, F. B., Hubbard, V. S., Jakicic, J. M., Kushner, R. F., Loria, C. M., Millen, B. E., Nonas, C. A., Pi-Sunyer, F. X., Stevens, J., Stevens, V. J., Wadden, T. A., Wolfe, B. M., Yanovski, S. Z., ... Tomaselli, G. F. (2014). 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation, 129(25 Suppl 2), S102-138. doi:10.1161/01.cir.0000437739.71477.ee
  • Johnstone, A. (2015). Fasting for weight loss: an effective strategy or latest dieting trend? International Journal of Obesity, 39(5), 727-733. doi:10.1038/ijo.2014.214
  • Klempel, M. C., Kroeger, C. M., Bhutani, S., Trepanowski, J. F., ve Varady, K. A. (2012). Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutrition Journal, 11, 98. doi:10.1186/1475-2891-11-98
  • Lichtash, C., Fung, J., Ostoich, K. C., ve Ramos, M. (2020). Therapeutic use of intermittent fasting and ketogenic diet as an alternative treatment for type 2 diabetes in a normal weight woman: a 14-month case study. BMJ Case Reports, 13(7). doi:10.1136/bcr-2019-234223
  • Longo, V. D., ve Panda, S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metabolism, 23(6), 1048-1059. doi:10.1016/j.cmet.2016.06.001
  • M. Correia, J., Santos, I., Pezarat-Correia, P., Minderico, C., ve V. Mendonca, G. (2020). Effects of intermittent fasting on specific exercise performance outcomes: A systematic review including meta-analysis. Nutrients, 12(5), 1390. doi:10.3390/nu12051390
  • MacLean, P. S., Wing, R. R., Davidson, T., Epstein, L., Goodpaster, B., Hall, K. D., Levin, B. E., Perri, M. G., Rolls, B. J., Rosenbaum, M., Rothman, A. J., ve Ryan, D. (2015). NIH working group report: Innovative research to improve maintenance of weight loss. Obesity, 23(1), 7-15. doi:10.1002/oby.20967
  • Martínez-Rodríguez, A., Rubio-Arias, J. A., García-De Frutos, J. M., Vicente-Martínez, M., ve Gunnarsson, T. P. (2021). Effect of high-intensity interval training and intermittent fasting on body composition and physical performance in active women. International Journal of Environmental Research and Public Health, 18(12). doi:10.3390/ijerph18126431
  • Mattson, M. P., Longo, V. D., ve Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing Research Reviews, 39, 46-58. doi:10.1016/j.arr.2016.10.005
  • Moro, T., Tinsley, G., Bianco, A., Marcolin, G., Pacelli, Q. F., Battaglia, G., Palma, A., Gentil, P., Neri, M., ve Paoli, A. (2016). Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. Journal of Translational Medicine, 14(1), 290. doi:10.1186/s12967-016-1044-0
  • Moro, T., Tinsley, G., Longo, G., Grigoletto, D., Bianco, A., Ferraris, C., Guglielmetti, M., Veneto, A., Tagliabue, A., Marcolin, G., ve Paoli, A. (2020). Time-restricted eating effects on performance, immune function, and body composition in elite cyclists: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 17(1), 65. doi:10.1186/s12970-020-00396-z
  • Neel, J. V. (1962). Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? American Journal of Human Genetics, 14(4), 353-362.
  • Panda, S., Hogenesch, J. B., ve Kay, S. A. (2002). Circadian rhythms from flies to human. Nature, 417(6886), 329-335. doi:10.1038/417329a
  • Parr, E. B., Devlin, B. L., Radford, B. E., ve Hawley, J. A. (2020). A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: A randomized controlled trial. Nutrients, 12(2). doi:10.3390/nu12020505
  • Parr, E. B., Heilbronn, L. K., ve Hawley, J. A. (2020). A time to eat and a time to exercise. Exercise and Sport Sciences Reviews, 48(1), 4-10. doi:10.1249/jes.0000000000000207
  • Patterson, R. E., ve Sears, D. D. (2017). Metabolic effects of intermittent fasting. Annual Review of Nutrition, 37, 371-393. doi:10.1146/annurev-nutr-071816-064634
  • Ravussin, E., Beyl, R. A., Poggiogalle, E., Hsia, D. S., ve Peterson, C. M. (2019). Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity, 27(8), 1244-1254. doi:10.1002/oby.22518
  • Razavi, R., Parvaresh, A., Abbasi, B., Yaghoobloo, K., Hassanzadeh, A., Mohammadifard, N., Clark, C. C. T., ve Morteza Safavi, S. (2021). The alternate-day fasting diet is a more effective approach than a calorie restriction diet on weight loss and hs-CRP levels. International Journal for Vitamin and Nutrition Research, 91(3-4), 242-250. doi:10.1024/0300-9831/a000623
  • Rynders, C. A., Thomas, E. A., Zaman, A., Pan, Z., Catenacci, V. A., ve Melanson, E. L. (2019). Effectiveness of intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients, 11(10). doi:10.3390/nu11102442
  • Schiavo-Cardozo, D., Lima, M. M., Pareja, J. C., ve Geloneze, B. (2013). Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clinical Endocrinology, 79(6), 807-811. doi:10.1111/cen.12114
  • Stratton, M. T., Tinsley, G. M., Alesi, M. G., Hester, G. M., Olmos, A. A., Serafini, P. R., Modjeski, A. S., Mangine, G. T., King, K., Savage, S. N., Webb, A. T., ve VanDusseldorp, T. A. (2020). Four weeks of time-restricted feeding combined with resistance training does not differentially influence measures of body composition, muscle performance, resting energy expenditure, and blood biomarkers. Nutrients, 12(4). doi:10.3390/nu12041126
  • Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., ve Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27(6), 1212-1221.e1213. doi:10.1016/j.cmet.2018.04.010
  • Tinsley, G. M., Forsse, J. S., Butler, N. K., Paoli, A., Bane, A. A., La Bounty, P. M., Morgan G.B., ve Grandjean, P.W. (2017). Time-restricted feeding in young men performing resistance training: A randomized controlled trial. European Journal of Sport Science, 17(2), 200-207. doi:10.1080/17461391.2016.1223173
  • Tinsley, G. M., ve La Bounty, P. M. (2015). Effects of intermittent fasting on body composition and clinical health markers in humans. Nutrition Reviews, 73(10), 661-674. doi:10.1093/nutrit/nuv041
  • Tovar, A. P., Richardson, C. E., Keim, N. L., Van Loan, M. D., Davis, B. A., ve Casazza, G. A. (2021). Four weeks of 16/8 time restrictive feeding in endurance trained male runners decreases fat mass, without affecting exercise performance. Nutrients, 13(9). doi:10.3390/nu13092941
  • Trepanowski, J. F., Kroeger, C. M., Barnosky, A., Klempel, M. C., Bhutani, S., Hoddy, K. K., ve Varady, K. A. (2017). Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: A randomized clinical trial. JAMA Internal Medicine, 177(7), 930-938. doi:10.1001/jamainternmed.2017.0936
  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., ve Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031. doi:10.1038/nature05414
  • Varady, K. A., Cienfuegos, S., Ezpeleta, M., ve Gabel, K. (2022). Clinical application of intermittent fasting for weight loss: progress and future directions. Nature Reviews Endocrinology, 18(5), 309-321. doi:10.1038/s41574-022-00638-x
  • Vasim, I., Majeed, C. N., ve DeBoer, M. D. (2022). Intermittent fasting and metabolic health. Nutrients, 14(3). doi:10.3390/nu14030631
  • WHO. (2023). Preventing noncommunicable diseases. Retrieved from https://www.who.int/activities/preventing-noncommunicable-diseases
  • Zarrinpar, A., Chaix, A., Yooseph, S., ve Panda, S. (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metabolism, 20(6), 1006-1017. doi:10.1016/j.cmet.2014.11.008
  • Zeb, F., Wu, X., Chen, L., Fatima, S., Haq, I. U., Chen, A., Majeed F., Feng Q., ve Li, M. (2020). Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. British Journal of Nutrition, 123(11), 1216-1226. doi:10.1017/s0007114519003428
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor ve Egzersiz Beslenmesi
Bölüm Makaleler
Yazarlar

Selin Aktitiz 0000-0001-6781-8681

Süleyman Bulut 0000-0001-6831-6608

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 26 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 36 Sayı: 2

Kaynak Göster

APA Aktitiz, S., & Bulut, S. (2025). Aralıklı Açlık Metabolizması, Vücut Kompozisyonu, Spor ve Egzersiz Performansı Etkileşimi: Geleneksel Derleme. Spor Bilimleri Dergisi, 36(2), 148-161. https://doi.org/10.17644/sbd.1703172

9551


SPOR BİLİMLERİ DERGİSİ


Yayın hakkı © Hacettepe Üniversitesi Spor Bilimleri Fakültesi