Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils

Yıl 2024, , 570 - 579, 23.12.2024
https://doi.org/10.19113/sdufenbed.1570399

Öz

This study aims to define new simple shape descriptors to analyze airfoils. The ImageJ platform is used to calculate twelve different shape descriptors such as area, convex hull, contour temperature and solidity by performing image processing. One of the most important findings is that an increase in the thickness of an airfoil leads to corresponding increases in its area, perimeter, area of minimum enclosing area, and convex hull area. Another noteworthy discovery is that the values derived from these basic features, either increasing or decreasing. Simple shape features in the study are not used independently, as they do not possess distinct characteristics that set them apart from one another. Machine learning and deep learning applications can achieve greater success when these features are combined with other elements. The combination of these features with other shape attributes, such as chain code histograms, shape signatures, and central moments, can enhance the success of machine learning and deep learning applications.

Kaynakça

  • [1] Santos, M., Mattos, B., Girardi, R. 2008. Aerodynamic coefficient prediction of airfoils using neural networks. 46th AIAA aerospace sciences meeting and exhibit. P.887.
  • [2] Du, X., He, P., Martins, J.R. 2021. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling. Aerospace Science and Technology 113.106701.
  • [3] Chen, H., He, L., Qian W., Wang, S. 2020. Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network. Symmetry. 12(4) 544.
  • [4] Raymer, D. 2012. Aircraft design: a conceptual approach. American instute of aeronautics and astronautics.
  • [5] Birajdar, M.R., Kale, S.A. 2015. Effect of leading edge radius and blending distance from leading edge on the aerodynamic performance of small wind türbine blade airfoils. International journal of energy and power engineering. 4 (5-1)54-58.
  • [6] Lim, J.W. 2018. Application of parametric airfoil design for rotor performance improvement. https://dspaceerf.nlr.nl/server/api/core/bitstreams/d428da1f-ca7a-4baf-93090924a609721e/content (Erişim Tarihi: 14.10.2024).
  • [7] Santos, M., Mattos, B., & Girardi, R. 2008, January. Aerodynamic coefficient prediction of airfoils using neural networks. In 46th AIAA aerospace sciences meeting and exhibit (p. 887).
  • [8] Zhang, Y., Sung, W. J., & Mavris, D. N. 2018. Application of convolutional neural network to predict airfoil lift coefficient. In 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference (p. 1903).
  • [9] Da Fona Costa, F., Jr. Cesar, R.M. 2018. Shape classification and analysis: theory and practice. Crc Press.
  • [10] Freeman, H. 1961. On the encoding of arbitrary geometric configurations. IRE transactions on electronic computers. (2) 260-268.
  • [11] Gonzales, R., Woods, R. 2018. Digital image processing. Pearson.
  • [12] Castleman, K. 1996. Digital image processing. Prentice Hall.
  • [13] Freeman, H., Shapira R. 1975. Determining the minimum-area encasing rectangle for an arbitrary closed areacurve. Commun. ACM 18 (7) 409-413.
  • [14] Toussaint G.T. 1983. Solving geometric problems with rotating calipers. Proc. IEEE Melecon. Vol.83 p.A10.
  • [15] Toussaint G.T. 2014. The rotating calipers: An efficient, multipurpose, computational tool. The international conference on computing technology and information management (ICCTIM). P215.
  • [16] Merchant, F., Castleman, K. 2022. Microscope image processing. Academic press.
  • [17] Chand, D.R., Kapur, S.S. 1970. An algorithm for convex polytopes. Journal of the ACM (JACM). 17(1) 78-86.
  • [18] Jarvis, R.A. 1973. On the identification of the convex hull of a finite set of points in the plane. Information processing letters 2(1) 18-21.
  • [19] Graham, R.L. 1972. An efficient algorithm for determining the convex hull of a finite planar set. Info. Proc. Lett. 1 132-133.
  • [20] Eddy, W.F. 1977. A new convex hull algorithm for planar sets, ACM transactions on mathematical software (TOMS). 3 (4) 398-403.
  • [21] Bykat, A. 1978. Convex hull of a finite set of points in two dimensions. Information processing letters. 7(6) 296-298.
  • [22] Preparata, F.P., Hong, S.J. 1977. Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM. 20(2) 87-93.
  • [23] Andrew, A.M.1979. Another efficient algorithm for convex hulls in two dimensions. Information processing letters. 9(5) 216-219.
  • [24] Kallay, M. 1984. The complexity of incremental convex hull algorithms in rd. Information processing letters. 19(4) 197.
  • [25] Kirkpatrick, D.G., Seidel, R. 1986. The ultimate planar convex hull algorithm? . SIAM journal on computing. 15(1) 287-299.
  • [26] Chan, T.M. 1996. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete & computational geometry. 16(4) 361-368.
  • [27] Dupain, Y., Kamae, T., Mendes, M. 1986. Can one measure the temperature of a curve?. Archive for rotational mechanics and analysis. 94 155-163.

NACA 4 Kanat Profillerinin Basit Şekil Temsil Yöntemleriyle İncelenmesi

Yıl 2024, , 570 - 579, 23.12.2024
https://doi.org/10.19113/sdufenbed.1570399

Öz

Bu çalışma, kanat profillerini analiz etmek için yeni basit şekil belirteçlerini tanımlamayı amaçlamaktadır. ImageJ platformu, görüntü işleme gerçekleştirerek alan, dışbükey gövde, kontur sıcaklığı ve katılık gibi on iki farklı şekil tanımlayıcısını hesaplamak için kullanılır. En önemli bulgulardan biri, bir kanat profilinin kalınlığındaki artışın, alanında, çevresinde, minimum çevreleyen alan alanında ve dışbükey gövde alanında karşılık gelen artışlara yol açmasıdır. Dikkat çekici bir diğer keşif ise, bu temel özelliklerden türetilen değerlerin artması veya azalmasıdır. Çalışmada basit şekil özellikleri, onları birbirinden ayıran belirgin özelliklere sahip olmadıkları için bağımsız olarak kullanılmamaktadır. Makine öğrenimi ve derin öğrenme uygulamaları, bu özellikler diğer öğelerle birleştirildiğinde daha büyük başarı elde edebilir. Bu özelliklerin zincir kod histogramları, şekil imzaları ve merkezi momentler gibi diğer şekil nitelikleriyle birleştirilmesi, makine öğrenimi ve derin öğrenme uygulamalarının başarısını artırabilir.

Kaynakça

  • [1] Santos, M., Mattos, B., Girardi, R. 2008. Aerodynamic coefficient prediction of airfoils using neural networks. 46th AIAA aerospace sciences meeting and exhibit. P.887.
  • [2] Du, X., He, P., Martins, J.R. 2021. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling. Aerospace Science and Technology 113.106701.
  • [3] Chen, H., He, L., Qian W., Wang, S. 2020. Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network. Symmetry. 12(4) 544.
  • [4] Raymer, D. 2012. Aircraft design: a conceptual approach. American instute of aeronautics and astronautics.
  • [5] Birajdar, M.R., Kale, S.A. 2015. Effect of leading edge radius and blending distance from leading edge on the aerodynamic performance of small wind türbine blade airfoils. International journal of energy and power engineering. 4 (5-1)54-58.
  • [6] Lim, J.W. 2018. Application of parametric airfoil design for rotor performance improvement. https://dspaceerf.nlr.nl/server/api/core/bitstreams/d428da1f-ca7a-4baf-93090924a609721e/content (Erişim Tarihi: 14.10.2024).
  • [7] Santos, M., Mattos, B., & Girardi, R. 2008, January. Aerodynamic coefficient prediction of airfoils using neural networks. In 46th AIAA aerospace sciences meeting and exhibit (p. 887).
  • [8] Zhang, Y., Sung, W. J., & Mavris, D. N. 2018. Application of convolutional neural network to predict airfoil lift coefficient. In 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference (p. 1903).
  • [9] Da Fona Costa, F., Jr. Cesar, R.M. 2018. Shape classification and analysis: theory and practice. Crc Press.
  • [10] Freeman, H. 1961. On the encoding of arbitrary geometric configurations. IRE transactions on electronic computers. (2) 260-268.
  • [11] Gonzales, R., Woods, R. 2018. Digital image processing. Pearson.
  • [12] Castleman, K. 1996. Digital image processing. Prentice Hall.
  • [13] Freeman, H., Shapira R. 1975. Determining the minimum-area encasing rectangle for an arbitrary closed areacurve. Commun. ACM 18 (7) 409-413.
  • [14] Toussaint G.T. 1983. Solving geometric problems with rotating calipers. Proc. IEEE Melecon. Vol.83 p.A10.
  • [15] Toussaint G.T. 2014. The rotating calipers: An efficient, multipurpose, computational tool. The international conference on computing technology and information management (ICCTIM). P215.
  • [16] Merchant, F., Castleman, K. 2022. Microscope image processing. Academic press.
  • [17] Chand, D.R., Kapur, S.S. 1970. An algorithm for convex polytopes. Journal of the ACM (JACM). 17(1) 78-86.
  • [18] Jarvis, R.A. 1973. On the identification of the convex hull of a finite set of points in the plane. Information processing letters 2(1) 18-21.
  • [19] Graham, R.L. 1972. An efficient algorithm for determining the convex hull of a finite planar set. Info. Proc. Lett. 1 132-133.
  • [20] Eddy, W.F. 1977. A new convex hull algorithm for planar sets, ACM transactions on mathematical software (TOMS). 3 (4) 398-403.
  • [21] Bykat, A. 1978. Convex hull of a finite set of points in two dimensions. Information processing letters. 7(6) 296-298.
  • [22] Preparata, F.P., Hong, S.J. 1977. Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM. 20(2) 87-93.
  • [23] Andrew, A.M.1979. Another efficient algorithm for convex hulls in two dimensions. Information processing letters. 9(5) 216-219.
  • [24] Kallay, M. 1984. The complexity of incremental convex hull algorithms in rd. Information processing letters. 19(4) 197.
  • [25] Kirkpatrick, D.G., Seidel, R. 1986. The ultimate planar convex hull algorithm? . SIAM journal on computing. 15(1) 287-299.
  • [26] Chan, T.M. 1996. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete & computational geometry. 16(4) 361-368.
  • [27] Dupain, Y., Kamae, T., Mendes, M. 1986. Can one measure the temperature of a curve?. Archive for rotational mechanics and analysis. 94 155-163.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sinyal İşleme
Bölüm Makaleler
Yazarlar

Haydar Tuna 0000-0003-2388-653X

Özcan Yırtıcı Bu kişi benim 0000-0002-6706-8646

Yayımlanma Tarihi 23 Aralık 2024
Gönderilme Tarihi 19 Ekim 2024
Kabul Tarihi 14 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tuna, H., & Yırtıcı, Ö. (2024). Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 570-579. https://doi.org/10.19113/sdufenbed.1570399
AMA Tuna H, Yırtıcı Ö. Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2024;28(3):570-579. doi:10.19113/sdufenbed.1570399
Chicago Tuna, Haydar, ve Özcan Yırtıcı. “Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 3 (Aralık 2024): 570-79. https://doi.org/10.19113/sdufenbed.1570399.
EndNote Tuna H, Yırtıcı Ö (01 Aralık 2024) Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 3 570–579.
IEEE H. Tuna ve Ö. Yırtıcı, “Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 3, ss. 570–579, 2024, doi: 10.19113/sdufenbed.1570399.
ISNAD Tuna, Haydar - Yırtıcı, Özcan. “Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/3 (Aralık 2024), 570-579. https://doi.org/10.19113/sdufenbed.1570399.
JAMA Tuna H, Yırtıcı Ö. Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:570–579.
MLA Tuna, Haydar ve Özcan Yırtıcı. “Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 3, 2024, ss. 570-9, doi:10.19113/sdufenbed.1570399.
Vancouver Tuna H, Yırtıcı Ö. Investigation of Simple Shape Descriptors for NACA 4 Digit Airfoils. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(3):570-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.