seatific journalSeatific Journal2792-0771Yıldız Teknik ÜniversitesiOptimizing power of a variable-temperature heat reservoir Brayton cycle for space nuclear power plantWangTanWuhan Institute of TechnologyChenLingenWuhan Institute of TechnologyGeYanlinWuhan Institute of TechnologyShiShuangshuangWuhan Institute of TechnologyFengHuijunWuhan Institute of Technology10.14744/seatific.2023.0002Thermodynamics and Statistical PhysicsTermodinamik ve İstatistiksel Fizik06222023319180322202305082023A variable-temperature heat reservoir endoreversible simple closed Brayton cycle (CBC) model for space nuclear power plant is established. Thermal efficiency (TEF) and power output (POW) are derived. When total heat transfer area of radiator panel and two heat exchangers (HEXs) is fixed, the maximum POW ( ) is obtained by optimizing area distributions ( , and ) among two HEXs and radiator panel, the double maximum POW ( ) is obtained by optimizing inlet temperature ( ) of cooling fluid in low temperature heat sink, and the triple maximum POW ( ) is obtained furtherly by optimizing thermal capacity rate matching ( ) between heat reservoir and working fluid. When , and are optimized, increases by 4.33% compare to initial POW ( ); when is furtherly optimized, increases by 6.33% compare to and increases 1.86% compare to ; and increases 11.76%, 7.13% and 5.17% compare to , and , respectively.space power plant variable-temperature heat reservoir cycle endoreversible closed Brayton cycle power optimization optimal performance finite time thermodynamicsAndresen, B. (1983). Finite-time thermodynamics. University of Copenhagen.Andresen, B., & Salamon, P. (2022). Future perspectives of finite-time thermodynamics. Entropy, 24(5), Article 690.Badescu, V. (2022). Maximum work rate extractable from energy fluxes. Journal of Non-Equilibrium Thermodynamics, 47(1), 77–93.Bejan, A. (1996). Entropy generation minimization. CRC Press.Berry, R. S., Salamon, P., & Andresen, B. (2020). How it all began. Entropy, 22(8), Article 908.Chen, L. G., & Lorenzini, G. (2022a). Comparative performance for thermoelectric refrigerators with radiative and Newtonian heat transfer laws. Case Stud. Thermal Engineering, 34, Article 102069.Chen, L. G., Li, P. L., Xia, S. J., Kong, R., & Ge, Y. L. (2022b). Multi-objective optimization for membrane reactor for steam methane reforming heated by molten salt.Chen, L. G., Meng, F. K., Ge, Y. L., Feng, H. J., & Xia, S. J. (2020a). Performance optimization of a class of combined thermoelectric heating devices. Science China: Technological Sciences, 63(12), 2640–2648.Chen, L. G., Meng, F. K., Ge, Y. L., & Feng, H. J. (2021a). Performance optimization for a multielement thermoelectric refrigerator with another linear heat transfer law. Journal of Non-Equilibrium Thermodynamics, 46(2), 149–162.Chen, L. G., Qi, C. Z., Ge, Y. L., & Feng, H. J. (2022a). Thermal Brownian heat engine with external and internal irreversibilities. Energy, 255, Article 124582.Chen, L. G., Shi, S. S., Ge, Y. L., & Feng, H. J. (2023a). Performance of a generalized irreversible isothermal chemical pump with diffusive mass transfer law. Energy, 263(C), Article 125956.Chen, L. G., Shi, S. S., Feng, H. J., & Ge, Y. L. (2023b). Ecological optimization of an endoreversible three- mass-reservoir chemical pump. Journal of Non- Equilibrium Thermodynamics, 48. Article 62.Chen, L. G., Wu, C., & Sun, F. R. (1996). A generalized model of real heat engines and its performance. Journal of the Energy Institute, 69(481), 214–222.Chen, L. G., Wu, C., & Sun, F. R. (1999). Finite time thermodynamic optimization or entropy generation minimization of energy systems. Journal of Non- Equilibrium Thermodynamics, 24(4), 327–359.Chen, L. G., & Xia, S. J. (2022a). Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics. Energy, 255, Article 124526.Chen, L. G., & Xia, S. J. (2022b). Minimizing entransy dissipation for heat transfer processes with q(Tn) and heat leakage. Case Studies in Thermal Engineering, 36, 102183.Chen, L. G., & Xia, S. J. (2022c). Heat engine cycle configurations for maximum work output with generalized models of reservoir thermal capacity and heat resistance. Journal of Non-Equilibrium Thermodynamics, 47(4), 329–338.Chen, L. G., & Xia, S. J. (2022d). Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory. Energy, 261, Article 125277.Chen, L. G., & Xia, S. J. (2022e). Maximum work output configuration of finite potential source irreversible isothermal chemical engines with bypass mass leakage and mass resistance. Energy Reports, 8, 11440–11445.Chen, L. G., & Xia, S. J. (2022f). Maximum profit output configuration of multi-reservoir resource exchange intermediary. Entropy, 24(10), Article 1451.Chen, L. G., & Xia, S. J. (2023a). Power output and efficiency optimization of endoreversible non-isothermal chemical engine via Lewis analogy. Scientific China: Technological Sciences, 66, Article 45.Chen, L. G., & Xia, S. J. (2023b). Power-optimization of multistage non-isothermal chemical engine system via Onsager equations, Hamilton-Jacobi-Bellman theory and dynamic programming. Scientific China: Technological Sciences, 66, 841–852.Chen, L. G., & Xia, S. J. (2023c). Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines. Journal of Non-Equilibrium Thermodynamics, 48, 41–53.Chen, Y. R. (2011). Maximum profit configurations of commercial engines. Entropy, 13(6), 1137–1151.Curzon, F. L., & Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43(1), 22–24.de Moura, E. F., Henriques, I. B., Guilherme, B., & Ribeiro, G. B. (2022b). Thermodynamic-dynamic coupling of a Stirling engine for space exploration. Thermal Sciences and Engineering Progress, 32, Article 101320.de Moura, E. F., Henriques, I. B., & Ribeiro, G. B. (2022a). Finite-time thermodynamics and exergy analysis of a Stirling engine for space power generation. Thermal Sciences and Engineering Progress, 27, Article 101078.Ding, Z. M., Qiu, S. S., Chen, L. G., & Wang, W. H. (2021). Modeling and performance optimization of double- resonance electronic cooling device with three electron reservoirs. Journal of Non-Equilibrium Thermodynamics, 46(3), 273–289.Ebrahimi, R. (2021). A new comparative study on performance of engine cycles under maximum thermal efficiency condition. Energy Reports, 7, 8858–8867.El-Genk, M. S., & Tournier, J. M. (2009). Performance analyses of VHTR plants with direct and indirect closed Brayton cycles and different working fluids. Progress in Nuclear Energy, 51(3), 556–572.Feidt, M. (2017). Finite physical dimensions optimal thermodynamics: 1. Fundamentals. ISTE Press and Elsevier.Feng, H. J., Qin, W. X., Chen, L. G., Cai, C. G., Ge, Y. L., & Xia, S. J. (2020). Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Conversation and Management, 205, Article 112424.Feng, H. J., Wu, Z. X., Chen, L. G., & Ge, Y. L. (2021). Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Conversion and Management, 227, Article 113585.Ge, Y. L., Chen, L. G., & Feng, H. J. (2021). Ecological optimization of an irreversible diesel cycle. The European Physical Journal Plus, 136(2), Article 198.Ge, Y. L., Shi, S. S., Chen, L. G., Zhang, D. F., & Feng, H. J. (2022). Power density analysis and multi-objective optimization for an irreversible dual cycle. Journal of Non-Equilibrium Thermodynamics, 47(3), 289–309.Gonca, G., & Sahin, B. (2016). Thermo-ecological performance analyses and optimizations of irreversible gas cycle engines. Applied Thermal Engineering, 105, 566–576.Gonca, G. (2017a). Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters. Energy, 124, 579–588.Gonca, G. (2017b). Exergetic and thermo-ecological performance analysis of a gas-mercury combined turbine system (GMCTS). Energy Conversion and Management, 151, 32–42.Gonca, G. (2018). The effects of turbine design parameters on the thermo-ecologic performance of a regenerated gas turbine running with different fuel kinds. Applied Thermal Engineering, 137, 419–429.Gonca, G., & Başhan, V. (2019). Multi-criteria performance optimization and analysis of a gas-steam combined power system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9), Article
373.Gonca, G., & Genc, I. (2019). Thermoecology-based performance simulation of a gas-mercury-steam power generation system (GMSPGS). Energy Conversion and Management, 189, 91–104.Gonca, G., & Guzel, B. (2022). Exergetic and exergo- economical analyses of a gas-steam combined cycle system. Journal of Non-Equilibrium Thermodynamics, 47(4), 415–431.Ibrahim, O. M., & Bourisli, R. I. (2021). The maximum power cycle operating between a heat source and heat sink with finite heat capacities. Journal of Non-Equilibrium Thermodynamics, 46(4), 383–402.Ibrahim, O. M., Klein, S. A., & Mitchell, J. W. (1991). Optimal heat power cycles for specified boundary conditions. ASME: Journal of Engineering for Gas Turbines and Power, 113(4), 514–521.Jin, Q. L., Xia, S. J., & Chen, L. G. (2023). A modified recompression S-CO2 Brayton cycle and its thermodynamic optimization. Energy, 263(E), Article 126015.Li, J., & Chen, L. G. (2021). Exergoeconomic performance optimization of space thermoradiative cell. European Physical Journal Plus, 136(6), Article 644.Li, J., & Chen, L. G. (2022). Optimal configuration of finite source heat engine cycle for maximum output work with complex heat transfer law. Journal of Non-Equilibrium Thermodynamics, 47(4), 433–441.Li, P. L., Chen, L. G., Xia, S. J., Kong, R., & Ge, Y. L. (2022). Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation. Scientific China: Technological Sciences, 65(3), 657–678.Lin, J., Xie, S., Jiang, C. X., Sun, Y. F., Chen, J. C., & Zhao, Y. R. (2022). Maximum power and corresponding efficiency of an irreversible blue heat engine for harnessing waste heat and salinity gradient energy. Scientific China: Technological Sciences, 65(3), 646–656.Liu, H. Q., Chi, Z. R., & Zang, S. S. (2020). Optimization of a closed Brayton cycle for space power systems. Applied Thermal Engineering, 179, Article 115611.Miao, X. Y., Zhang, H. C., Zhang, D., Zhang, C., & Huang, Z. (2022). Properties of nitrous oxide and helium mixtures for space nuclear recompression Brayton cycle. Energy Reports, 8, 2480–2489.Muschik, W., & Hoffmann, K. H. (2020). Modeling, simulation, and reconstruction of 2-reservoir heat- to-power processes in finite-time thermodynamics. Entropy, 22(9), Article 997.Park, H., & Kim, M. S. (2016). Performance analysis of sequential Carnot cycles with finite heat sources and heat sinks and its application in organic Rankine cycles. Energy, 99, 1–9.Paul, R., & Hoffmann K. H. (2022). Optimizing the piston paths of Stirling cycle cryocoolers. Journal of Non- Equilibrium Thermodynamics, 47(2), 195–203.Qi, C. Z., Ding, Z. M., Chen, L. G., Ge, Y. L., & Feng, H. J. (2021a). Modelling of irreversible two-stage combined thermal Brownian refrigerators and their optimal performance. Journal of Non-Equilibrium Thermodynamics, 46(2), 175–189.Qi, C. Z., Chen, L. G., Ding, Z. M., Ge, Y. L., & Feng, H. J. (2021b). A generalized irreversible thermal Brownian motor cycle and its optimal performance. European Physical Journal Plus, 136(11), Article 1120.Qi, C. Z., Chen, L. G., Ge, Y. L., & Feng, H. J. (2022a). Heat transfer effect on the performance of thermal Brownian refrigerator. European Physical Journal Plus, 137(3), Article 349.Qi, C. Z., Chen, L. G., Ge, Y. L., Yang, W. H., & Feng, H. J. (2022b). Thermal Brownian heat pump with external and internal irreversibilities. European Physical Journal Plus, 137(9), Article 1079.Qiu, S. S., Ding, Z. M., Chen, L. G., & Ge, Y. L. (2021a). Performance optimization of three-terminal energy selective electron generators. Scientific China: Technical Sciences, 64(8), 1641–1652.Qiu, S. S., Ding, Z. M., Chen, L. G., & Ge, Y. L. (2021b). Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Scientific China: Technological Sciences, 64(5), 1007–1016.Qiu, X. F., Chen, L. G., Ge, Y. L., & Shi, S. S. (2022). Efficient power characteristic analyses and multi-objective optimization for an irreversible simple closed gas turbine cycle. Entropy, 24(11), Article 1531.Romano, L. F. R., & Ribeiro. G. B. (2021). Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants. Applied Thermodynamic Engineering, 196, Article 117355.Toro, C., & Lior, N. (2017). Analysis and comparison of solar- driven Stirling, Brayton and Rankine cycles for space power generation. Energy, 120, 549–564.Ust, Y., Sogut, O. S., Sahin, B., & Durmayaz, A. (2006). Ecological coefficient of performance (ECOP) optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs. Journal of the Energy Institute, 79(1), 47–52.Valencia-Ortega, G., Levario-Medina, S., & Barranco- Jiménez, M. A. (2021). The role of internal irreversibilities in the performance and stability of power plant models working at maximum є-ecological function. Journal of Non-Equilibrium Thermodynamics, 46(4), 413–429.Wang, C. L., Zhang, R., Guo, K. L., Zhang, D. L., Tian, W. X., Qiu, S. Z., & Su, G. H. (2021a). Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle. Energy, 15(4), 916–929.Wang, T., Chen, L. G., Liu, P., Ge, Y. L., & Feng, H. J. (2022). Performance analysis and optimization of an irreversible Carnot heat engine cycle for space power plant. Energy Reports, 8, 6593–6601.Wang, T., Ge, Y. L., Chen, L. G., Feng, H. J., & Yu, J. Y. (2021b). Optimal heat exchanger area distribution and low-temperature heat sink temperature for power optimization of an endoreversible space Carnot cycle. Entropy, 23(10), Article 1285.Wu, H., Ge, Y. L., Chen, L. G., & Feng, H. J. (2021). Power, efficiency, ecological function and ecological coefficient of performance optimizations of an irreversible Diesel cycle based on finite piston speed.
Energy, 216, Article 119235.Wu, Z. X., Feng, H. J., Chen, L. G., Tang, W., Shi, J. C., & Ge, Y. L. (2020). Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Conversion and Management, 210(12), Article 112727.Wu, Z. X., Chen, L. G., Feng, H. J., & Ge, Y. L. (2021). Constructal thermodynamic optimization for a novel Kalina-organic Rankine combined cycle to utilize waste heat. Energy Reports, 7, 6095–6106.Xu, H. R., Chen, L. G., Ge, Y. L., & Feng, H. J. (2022). Multi-objective optimization of Stirling heat engine with various heat transfer and mechanical losses. Energy, 256, Article 124699.Zhang, H. C., Liu, X. T., Liu, J., & Li, Z. E. (2021). Characteristics and optimization of SCO2 Brayton cycle system for power sodium-cooled fast reactor on Mars. Thermal Science, 25(6B), 4659–4666.Zhang, X., Yang, G. F., Yan, M. Q., Ang, L. K., Ang, Y. S., & Chen, J. C. (2021). Design of an all-day electrical power generator based on thermoradiative devices. Science China: Technological Sciences, 64(10), 2166–
2173.