Araştırma Makalesi
BibTex RIS Kaynak Göster

SOME FIXED POINT RESULTS FOR CONTINUOUS FUNCTIONS ON AN ARBITRARY INTERVALS

Yıl 2019, Cilt: 37 Sayı: 3, 755 - 767, 01.09.2020

Öz

In this paper, we first give a necessary and sufficient condition for convergence of Picard-S iteration process to a fixed point of continuous functions on an arbitrary interval and prove equivalence of Picard-S and P iterative processes. We also compare the rate of convergence between Picard-S and some others iteration processes in the literature. Finally, some numerical examples for comparing the rate of convergence of those methods are also given.

Kaynakça

  • [1] Dogan, K., Karakaya, V. (2014) On the Convergence and Stability Results for a New General Iterative Process. Scientific World Journal (2014).
  • [2] Khan, A. R., Gürsoy, F., Karakaya, V. (2015) Jungck-Khan iterative scheme and higher convergence rate. International Journal of Computer Mathematics, (2015), 1-14.
  • [3] Mann, WR. (1953) Mean value methods in iterations. Proc. Am. Math. Soc. 44, 506-510.
  • [4] Ishikawa, S. (1974) Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 147-150.
  • [5] Noor, M.A., (2000) New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 217-229.
  • [6] Rhoades, B. E., (1974) Fixed point iterations using infinite matrices. Trans. Am. Math. Soc. 196, 161-176.
  • [7] Rhoades, B. E., (1976) Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 741-750.
  • [8] Borwein,.D., Borwein, J. (1991) Fixed point iterations for real functions. J. Math. Anal. Appl. 157, 112-126.
  • [9] Qing, Y., Qihou, L. (2006) The necessary and sufficient condition for the convergence of Ishikawa iteration on an arbitrary interval. J. Math. Anal. Appl. 323, 1383-1386.
  • [10] Phuengrattana, W, Suantai, S. (2011) On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuousfunctions on an arbitrary interval. J. Comput. Appl. Math. 235, 3006-3014
  • [11] Agarwal, R.P., O’Regan, D. and Sahu, D.R. (2007) Iterative construction of xed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1) 61-79.
  • [12] Karakaya, V., Dogan, K., Gursoy, F. and Erturk, M. (2013) Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces, Abstract and Applied Analysis, vol. 2013, Article ID 560258, 9 pages, 2013.
  • [13] Kadioglu, N., Yildirim, I. (2013) On the convergence of an iteration method for continuous mappings on an arbitrary interval, Fixed Point Theory Appl., 2013:124.
  • [14] Khan, S.H. (2013) A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. (2013). doi:10.1186/1687-1812-2013-69.
  • [15] Karahan I., Ozdemir, (2013) M. Fixed point problems of the Picard-Mann hybrid iterative process for continuous functions on an arbitrary interval, Fixed Point Theory and Applications 1 (2013): 244.
  • [16] Gürsoy, F. Karakaya, V. (2014) A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv preprint arXiv:1403.2546.
  • [17] Sainuan, P. (2015) Rate of Convergence of P-Iteration and S-Iteration for Continuous Functions on Closed Intervals”, Thai Journal of Mathematics Volume 13 (2015) Number 2: 449–457.
  • [18] Karahan, I. (2018) Keyfi Aralıkta Sürekli Fonksiyonlar için S-iterasyon Metodunun Yakınsaklılığı, Iğdır Univ. J. Inst. Sci. Tech. 8(2): 201-213.
Yıl 2019, Cilt: 37 Sayı: 3, 755 - 767, 01.09.2020

Öz

Kaynakça

  • [1] Dogan, K., Karakaya, V. (2014) On the Convergence and Stability Results for a New General Iterative Process. Scientific World Journal (2014).
  • [2] Khan, A. R., Gürsoy, F., Karakaya, V. (2015) Jungck-Khan iterative scheme and higher convergence rate. International Journal of Computer Mathematics, (2015), 1-14.
  • [3] Mann, WR. (1953) Mean value methods in iterations. Proc. Am. Math. Soc. 44, 506-510.
  • [4] Ishikawa, S. (1974) Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 147-150.
  • [5] Noor, M.A., (2000) New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 217-229.
  • [6] Rhoades, B. E., (1974) Fixed point iterations using infinite matrices. Trans. Am. Math. Soc. 196, 161-176.
  • [7] Rhoades, B. E., (1976) Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 741-750.
  • [8] Borwein,.D., Borwein, J. (1991) Fixed point iterations for real functions. J. Math. Anal. Appl. 157, 112-126.
  • [9] Qing, Y., Qihou, L. (2006) The necessary and sufficient condition for the convergence of Ishikawa iteration on an arbitrary interval. J. Math. Anal. Appl. 323, 1383-1386.
  • [10] Phuengrattana, W, Suantai, S. (2011) On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuousfunctions on an arbitrary interval. J. Comput. Appl. Math. 235, 3006-3014
  • [11] Agarwal, R.P., O’Regan, D. and Sahu, D.R. (2007) Iterative construction of xed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (1) 61-79.
  • [12] Karakaya, V., Dogan, K., Gursoy, F. and Erturk, M. (2013) Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces, Abstract and Applied Analysis, vol. 2013, Article ID 560258, 9 pages, 2013.
  • [13] Kadioglu, N., Yildirim, I. (2013) On the convergence of an iteration method for continuous mappings on an arbitrary interval, Fixed Point Theory Appl., 2013:124.
  • [14] Khan, S.H. (2013) A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. (2013). doi:10.1186/1687-1812-2013-69.
  • [15] Karahan I., Ozdemir, (2013) M. Fixed point problems of the Picard-Mann hybrid iterative process for continuous functions on an arbitrary interval, Fixed Point Theory and Applications 1 (2013): 244.
  • [16] Gürsoy, F. Karakaya, V. (2014) A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv preprint arXiv:1403.2546.
  • [17] Sainuan, P. (2015) Rate of Convergence of P-Iteration and S-Iteration for Continuous Functions on Closed Intervals”, Thai Journal of Mathematics Volume 13 (2015) Number 2: 449–457.
  • [18] Karahan, I. (2018) Keyfi Aralıkta Sürekli Fonksiyonlar için S-iterasyon Metodunun Yakınsaklılığı, Iğdır Univ. J. Inst. Sci. Tech. 8(2): 201-213.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Kadri Dogan Dogan Bu kişi benim

Faik Gursoy Bu kişi benim 0000-0002-7118-9088

Vatan Karakaya Bu kişi benim 0000-0003-4637-3139

Yayımlanma Tarihi 1 Eylül 2020
Gönderilme Tarihi 2 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 37 Sayı: 3

Kaynak Göster

Vancouver Dogan KD, Gursoy F, Karakaya V. SOME FIXED POINT RESULTS FOR CONTINUOUS FUNCTIONS ON AN ARBITRARY INTERVALS. SIGMA. 2020;37(3):755-67.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/