DESIGN AND DEVELOPMENT OF A HIGH GAIN DISCONE ANTENNA FOR 4G LTE APPLICATIONS
Yıl 2019,
Cilt: 37 Sayı: 4, 1087 - 1096, 01.12.2019
Aysu Belen
Sezgin Ördek
Hakan P. Partal
Öz
This study offers the design and realization procedure of a broadband monopole antenna for use in communication applications between 670 MHz-2750 MHz. the proposed monopole antenna comprises a low-cost discone antenna which has a relatively high gain value over a wide operation band. Firstly, the performance of the antenna is studied by changing the value of design parameters. Effect of each design parameter on return loss (S11) and gain characteristic of the antenna design is observed and the optimal design parameters are taken. Both simulation and measurement results of the proposed antenna design show a matched bandwidth and a return loss of less than -10 dB in the desired operation band of 670 MHz and 2750 MHz. as it can be seen from both simulation and experimental results, the proposed discone antenna design is a suitable solution for broad-band wireless communication applications.
Kaynakça
- [1] Esquius-Morote M, Fuchs B, Zurcher J, Mosig JR. Novel thin and compact H-plane SIW horn antenna. In Antennas and Propagation, IEEE Transactions on Antennas and Propagation;61: 2911-2920, 2013.
- [2] Liu J, Jackson D, Long Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans on Antennas and Propagation;60:20-29, , Jan 2012.
- [3] Mahouti P, Belen MA, Güneş F., 2018. Performance Enhancement of a Microstrip Patch Antenna using Substrate Integrated Waveguide Frequency Selective Surface for ISM Band Applications. Microwave and Optical Technology Letters, 60:1160–1164. https://doi.org/10.1002/mop.31124
- [4] Bozzı, M., Georgıadıs, A., Wu, K., “Review of substrate-integrated waveguide circuits and antennas”, IET Microwaves, Antennas and Propagation. vol. 5, no. 8, p. 909–920,2011
- [5] Belen M.A., Mahouti P., Çalişkan A., Belen A., 2017."Modeling And Realization Of Cavity-Backed Dual Band SIW Antenna", Applied Computational Electromagnetics Society Journal, Vol.32, Pp.974-978.
- [6] Mahouti, P., Güneş, F., Belen, M. A., Çalışkan, A., Demirel, S. and Sharipov, Z., 2016. Horn antennas with enhanced functionalities through the use of frequency selective surfaces. Int J RF and Microwave Comp Aid Eng, 26: 287–293. doi:10.1002/mmce.20971
- [7] Güneş F, Sharipov Z, Belen MA, Mahouti P., 2017. GSM filtering of horn antennas using modified double square frequency selective surface. Int J RF Microwe Computer Aided Eng., e21136. https://doi.org/10.1002/mmce.21136.
- [8] Belen, Mehmet A., and Peyman Mahouti. "Realization of Dielectric Sheets for Gain Improvement of Ultra-Wideband Horn Antennas Using 3D Printer Technology." Applied Computational Electromagnetics Society Journal 34.5 (2019).
- [9] Belen M.A., Güneş F., Mahouti P., Belen A., 2018. "UWB Gain Enhancement of Horn Antennas Using Miniaturized Frequency Selective Surface", Applied Computational Electromagnetics Society Journal, no.9, pp.997-1002.
- [10] A. Caliskan, M. A. Belen, P. Mahouti, S. Demirel, F. Günes, 2015. “Design of a Multiband Microstrip Patch Antenna with Defected Ground Structures”, European Microwave Week EUMW 2015, Paris, France.
- [11] P. Mahouti, F. Güneş, M. A. Belen, A. Çalışkan, and S. Demirel, 2016. Design and Realization of Dual Band Microstrip Monopole Antenna”, MIKON 2016 - 21st International Conference on Microwaves, Radar and Wireless Communications, May 9-11, Krakow POLAND.
- [12] N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole antenna,” IEEE Trans. Antennas Propag., vol. 46, no. 2, pp. 294–295, Feb. 1998.
- [13] M. Ghafari, M. Adjrad, and M. Ghavam, “A novel UWB discone antenna for biomedical applications,” in Proc. EMS, Manchester, U.K., Nov. 2013, pp. 127–131.
- [14] K. Nagasawa and I. Matsuzuka, “Radiation field consideration of biconical horn antenna with different flare angles,” IEEE Trans. Antennas Propag., vol. 36, no. 9, pp. 1306–1310, Sep. 1988.
- [15] Y. Jian, “On conditions for constant radiation characteristics for logperiodic array antennas,” IEEE Trans. Antennas Propag, vol. 58, no. 5, pp. 1521–1526, May 2010.
- [16] B. Jacobs, J. W. Odendaal, and J. Joubert, “An improved design for a 1–18 GHz double-ridged guide horn antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4110–4118, Sep. 2012.
- [17] K. H. Kim, J. U. Kim, and S. O. Park, “An ultrawide-band double discone antennawith the tapered cylindrical wires,” IEEE Trans. Antennas Propag., vol. 53, no. 10, pp. 3403–3406, Oct. 2005.
- [18] J. U. Kim and S. O. Park, “Novel ultra-wideband discone antenna,” Microw. Opt. Technol. Lett., vol. 42, pp. 113–115, Jul. 2004.
- [19] K.-H. Kim, J.-U. Kim, and S.-O. Park, “An ultrawide-band double discone antenna with the tapered cylindrical wires,” Antennas and Propagation, IEEE Transactions on, vol. 53, no. 10, pp. 3403–3406, Oct 2005.
- [20] Y. Zhao and W. Wang, “Design of a novel broadband skeletal discone antenna with a compact configuration,” Antennas and Wireless Propagation Letters, IEEE, vol. PP, no. 99, pp. 1–1, 2014.
- [21] A-info, LB8180, 0.8-18 GHz Broadband Horn Antenna, Available at: http://www.ainfoinc.com/en/p_ant_h_brd.asp, Accessed on November 9, 2015.
- [22] Irfan Shahid,1 Fawad Hussain,1 Jehanzeb Burki,2 and M. Shoaib Arif, “An Ultrawideband Inverted Double Discone Antenna With 150:1 Impedance Bandwidth”, Microwave And Optical Technology Letters / Vol. 58, No. 1, January 2016 DOI 10.1002/mop
- [23] Mehran Ghafari, Mounir Adjrad, Mohammad Ghavami, “A Novel UWB Discone Antenna for Biomedical Applications ”, 2013 European Modelling Symposium
- [24] Ricardo Gonc¸alves1, Pedro Pinho1;2 and Nuno B. Carvalho, “Design and implementation of a 3D printed discone antenna for TV broadcasting system”, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, DOI: 10.1109/APS.2015.7304543
- [25] D. Tran, M. Wang and A. Yarovoy, “Ultra Wideband Slot-loaded, Dielectric-filled Discone Antenna for WLAN Applications”, 2016 10th European Conference on Antennas and Propagation (EuCAP), DOI: 10.1109/EuCAP.2016.7481352
- [26] Yiqiang Yu, Hongmei Zhang, Zhizhang Chen, “A Broadband Dual-Polarized Omnidirectional MIMO Antenna for 4G LTE Applications”, Progress In Electromagnetics Research Letters, Vol. 57, 91–96, 2015.
Yıl 2019,
Cilt: 37 Sayı: 4, 1087 - 1096, 01.12.2019
Aysu Belen
Sezgin Ördek
Hakan P. Partal
Kaynakça
- [1] Esquius-Morote M, Fuchs B, Zurcher J, Mosig JR. Novel thin and compact H-plane SIW horn antenna. In Antennas and Propagation, IEEE Transactions on Antennas and Propagation;61: 2911-2920, 2013.
- [2] Liu J, Jackson D, Long Y. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans on Antennas and Propagation;60:20-29, , Jan 2012.
- [3] Mahouti P, Belen MA, Güneş F., 2018. Performance Enhancement of a Microstrip Patch Antenna using Substrate Integrated Waveguide Frequency Selective Surface for ISM Band Applications. Microwave and Optical Technology Letters, 60:1160–1164. https://doi.org/10.1002/mop.31124
- [4] Bozzı, M., Georgıadıs, A., Wu, K., “Review of substrate-integrated waveguide circuits and antennas”, IET Microwaves, Antennas and Propagation. vol. 5, no. 8, p. 909–920,2011
- [5] Belen M.A., Mahouti P., Çalişkan A., Belen A., 2017."Modeling And Realization Of Cavity-Backed Dual Band SIW Antenna", Applied Computational Electromagnetics Society Journal, Vol.32, Pp.974-978.
- [6] Mahouti, P., Güneş, F., Belen, M. A., Çalışkan, A., Demirel, S. and Sharipov, Z., 2016. Horn antennas with enhanced functionalities through the use of frequency selective surfaces. Int J RF and Microwave Comp Aid Eng, 26: 287–293. doi:10.1002/mmce.20971
- [7] Güneş F, Sharipov Z, Belen MA, Mahouti P., 2017. GSM filtering of horn antennas using modified double square frequency selective surface. Int J RF Microwe Computer Aided Eng., e21136. https://doi.org/10.1002/mmce.21136.
- [8] Belen, Mehmet A., and Peyman Mahouti. "Realization of Dielectric Sheets for Gain Improvement of Ultra-Wideband Horn Antennas Using 3D Printer Technology." Applied Computational Electromagnetics Society Journal 34.5 (2019).
- [9] Belen M.A., Güneş F., Mahouti P., Belen A., 2018. "UWB Gain Enhancement of Horn Antennas Using Miniaturized Frequency Selective Surface", Applied Computational Electromagnetics Society Journal, no.9, pp.997-1002.
- [10] A. Caliskan, M. A. Belen, P. Mahouti, S. Demirel, F. Günes, 2015. “Design of a Multiband Microstrip Patch Antenna with Defected Ground Structures”, European Microwave Week EUMW 2015, Paris, France.
- [11] P. Mahouti, F. Güneş, M. A. Belen, A. Çalışkan, and S. Demirel, 2016. Design and Realization of Dual Band Microstrip Monopole Antenna”, MIKON 2016 - 21st International Conference on Microwaves, Radar and Wireless Communications, May 9-11, Krakow POLAND.
- [12] N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole antenna,” IEEE Trans. Antennas Propag., vol. 46, no. 2, pp. 294–295, Feb. 1998.
- [13] M. Ghafari, M. Adjrad, and M. Ghavam, “A novel UWB discone antenna for biomedical applications,” in Proc. EMS, Manchester, U.K., Nov. 2013, pp. 127–131.
- [14] K. Nagasawa and I. Matsuzuka, “Radiation field consideration of biconical horn antenna with different flare angles,” IEEE Trans. Antennas Propag., vol. 36, no. 9, pp. 1306–1310, Sep. 1988.
- [15] Y. Jian, “On conditions for constant radiation characteristics for logperiodic array antennas,” IEEE Trans. Antennas Propag, vol. 58, no. 5, pp. 1521–1526, May 2010.
- [16] B. Jacobs, J. W. Odendaal, and J. Joubert, “An improved design for a 1–18 GHz double-ridged guide horn antenna,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4110–4118, Sep. 2012.
- [17] K. H. Kim, J. U. Kim, and S. O. Park, “An ultrawide-band double discone antennawith the tapered cylindrical wires,” IEEE Trans. Antennas Propag., vol. 53, no. 10, pp. 3403–3406, Oct. 2005.
- [18] J. U. Kim and S. O. Park, “Novel ultra-wideband discone antenna,” Microw. Opt. Technol. Lett., vol. 42, pp. 113–115, Jul. 2004.
- [19] K.-H. Kim, J.-U. Kim, and S.-O. Park, “An ultrawide-band double discone antenna with the tapered cylindrical wires,” Antennas and Propagation, IEEE Transactions on, vol. 53, no. 10, pp. 3403–3406, Oct 2005.
- [20] Y. Zhao and W. Wang, “Design of a novel broadband skeletal discone antenna with a compact configuration,” Antennas and Wireless Propagation Letters, IEEE, vol. PP, no. 99, pp. 1–1, 2014.
- [21] A-info, LB8180, 0.8-18 GHz Broadband Horn Antenna, Available at: http://www.ainfoinc.com/en/p_ant_h_brd.asp, Accessed on November 9, 2015.
- [22] Irfan Shahid,1 Fawad Hussain,1 Jehanzeb Burki,2 and M. Shoaib Arif, “An Ultrawideband Inverted Double Discone Antenna With 150:1 Impedance Bandwidth”, Microwave And Optical Technology Letters / Vol. 58, No. 1, January 2016 DOI 10.1002/mop
- [23] Mehran Ghafari, Mounir Adjrad, Mohammad Ghavami, “A Novel UWB Discone Antenna for Biomedical Applications ”, 2013 European Modelling Symposium
- [24] Ricardo Gonc¸alves1, Pedro Pinho1;2 and Nuno B. Carvalho, “Design and implementation of a 3D printed discone antenna for TV broadcasting system”, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, DOI: 10.1109/APS.2015.7304543
- [25] D. Tran, M. Wang and A. Yarovoy, “Ultra Wideband Slot-loaded, Dielectric-filled Discone Antenna for WLAN Applications”, 2016 10th European Conference on Antennas and Propagation (EuCAP), DOI: 10.1109/EuCAP.2016.7481352
- [26] Yiqiang Yu, Hongmei Zhang, Zhizhang Chen, “A Broadband Dual-Polarized Omnidirectional MIMO Antenna for 4G LTE Applications”, Progress In Electromagnetics Research Letters, Vol. 57, 91–96, 2015.