Research Article
BibTex RIS Cite

INVESTIGATION OF GAS PRESSURE EFFECT ON POWDER CHARACTERIZATION OF AZ31 ALLOY PRODUCED BY GAS ATOMIZATION METHOD

Year 2019, Volume: 37 Issue: 2, 373 - 380, 01.06.2019

Abstract

In this study, the effect of gas pressure on the shape and size of the AZ31 alloy powder produced by using the gas atomization method was investigated experimentally. Experiments were carried out at 840°C constant temperature, in 2 mm constant nozzle diameter and by applying 4 different gas pressures (5, 15, 25 and 35 bar). Argon gas was used to atomize the melt. Scanning electron microscope (SEM) to determine the shape of produced AZ31 powders, XRD and XRF analysis to determine the phases forming in the internal structures of the produced powders and the percentages of these phases and a laser measuring device for powder size analysis were used. The general appearances of AZ31 alloy powders produced had general appearances of complex, ligament, acicular, droplet, flake and spherical shape, but depending on the increase in gas pressure, the shape of the powders is seen to change mostly towards droplet and spherical.

References

  • [1] Mordike, B.L., Ebert, T., 2001. Magnesium Properties—Applications—Potential, Mat. Sci. Eng. A, 302, 37-45. https://doi.org/10.1016/S0921-5093(00)01351-4
  • [2] Fredrich, H. and Schumann, S., 2001. Research for a New Age of Magnesium in the Automotive Industry, J. Mat. Proc. Tech., 117, 276-28. https://doi.org/10.1016/S0924-0136(01)00780-4
  • [3] Froes, F.H., Eliezer, D. and Aghion, E., 1998. The Science, Technology, and Applications of Magnesium. J. Mat. Proc. Tech., 50 (9), 30-34. https://doi.org/10.1007/s11837-998-0411-6
  • [4] Duygulu, O., Kaya, R.A., Oktay, G. and Kaya, A.A., 2007. Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant, Materials Science Forum, 546-549, 421-424. https://doi.org/10.4028/www.scientific.net/msf.546-549.421
  • [5] Kaya, A.A., 2007. Future of Magnesium: Applications in Transportation and Bone Surgery, 10th Int. Symposium on Advanced Materials (ISAM-2007), Islamabad, Pakistan. https://doi.org/10.3182/20070604-3-mx-2914
  • [6] Karagöz, Ş., Yamanoğlu, R., ve Atapek, Ş.H., 2009. Metalik toz işleme teknolojisi ve prosesleme kademeleri açısından parametrik ilişkiler, Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Cilt:XXII, Sayı:3, 77-87.
  • [7] Neite, G., Kubota, K., Higashi, K. and Hehmann, F., 1996. Chapter 4-Magnesium-Based alloys, in: R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), Structure and Properties of Nonferrous Alloys, vol. 8, 113-212. https://doi.org/10.1002/9783527603978.mst0082
  • [8] Oğuz, Ş., Öztürk, Z., Uzun, E., Kurt, A. ve Boz, M., 2011. Gaz atomizasyonu yöntemi ile kalay tozu üretiminde gaz basıncının toz boyutu ve şekline etkisi. 6th International Advanced Technologies Symposium (IATS’11), 565-568.
  • [9] Gökçe, A., Fındık, F., ve Kurt, A.O., 2017. Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri. Engineer & the Machinery Magazine, 58, 686.
  • [10] Yıldırım, M., and Özyürek, D., 2013. The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys, Materials & Design 51, 767-774. https://doi.org/10.1016/j.matdes.2013.04.089
  • [11] Gu, S., Zeoli, N., 2006. Numerical Modelling of Droplet Break-Up for Gas Atomisation, Computational Materials Science, 38 (2): 282-292. https://doi.org/10.1016/j.commatsci.2006.02.012
  • [12] Küçükarslan, S., 2006. Gaz Atomize Kalay Tozu Üretim Parametrelerinin Araştırılması, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • [13] German, R.M., 1984. Powder Metallurgy Science 2nd Edition, Metal Powder Industries Federation, USA. https://doi.org/10.1179/pom.1984.27.2.116
  • [14] Unal, R., Aydin M., 2007. High Efficient Metal Powder Production by Gas Atomisation Process, Progress in Powder Metallurgy, 534- 536: 57-60. https://doi.org/10.4028/0-87849-419-7.57
  • [15] Unal, A., 1990. Production of Rapidly Solidified Aluminium Alloy Powders by Gas Atomisation and Their Applications, Powder Metallurgy, 33(1): 53-64. https://doi.org/10.1179/pom.1990.33.1.53
  • [16] Sing, D., Koria, S.C., Dube, R.K., 2001. Study of Free Fall Gas Atomisation of Liquid Metals to Produce Powder, Powder Metallurgy, 44(2): 177-184. https://doi.org/10.1179/003258901666239
  • [17] Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., & Srivastava, V., 2004. Atomization process for metal powder. Materials Science and Engineering: A, 383 (1), 1-6. https://doi.org/10.1016/j.msea.2004.02.059
  • [18] Uslan, İ., Küçükarslan, S., 2010. Kalay Tozu Üretimine Gaz Atomizasyonu Parametrelerinin Etkisinin İncelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 25 (1).
  • [19] Akkaş, M., Çetin, T., Boz, M. 2018. The Effect of Gas Pressure on Powder Size and Morphology in The Production of AZ91 Powder by Gas Atomization Method. 10.24425/Amm.2018.125081
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Mehmet Akkaş This is me

Kamal Mohamed Em Kara This is me 0000-0003-0992-7753

Tayfun Çetin This is me 0000-0001-8060-344X

Mustafa Boz This is me 0000-0001-9148-0748

Publication Date June 1, 2019
Submission Date May 20, 2018
Published in Issue Year 2019 Volume: 37 Issue: 2

Cite

Vancouver Akkaş M, Em Kara KM, Çetin T, Boz M. INVESTIGATION OF GAS PRESSURE EFFECT ON POWDER CHARACTERIZATION OF AZ31 ALLOY PRODUCED BY GAS ATOMIZATION METHOD. SIGMA. 2019;37(2):373-80.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/