MODELING AND OPTIMIZATION OF THE ORIGINAL OFFSET ON THE NC MACHINE TOOL
Year 2019,
Volume: 37 Issue: 2, 380 - 392, 01.06.2019
Farouk Messaoud
Mohamed Rahou
Fethi Sebaa
Abstract
Currently the trajectories of the cutting tool play an important role in optimizing the manufacturing time and the machining quality (roughness, manufacturing tolerances, etc.).The purpose of this paper is to develop an approach for the manufacturing tolerances optimization under the effect of the cutting tool trajectory. This work is organized around two axes. In the first axis, an experimental study was conducted to determine the cutting tool path with less error. The second axis is devoted to modeling and real-time optimization of the cutting tool path defects. In this section the defects were modeled by the least square edit method.
References
- [1] Chanda, L., Cripps, R. J. (2018). Characterising the effects of shape on tool path motion. International Journal of Machine Tools and Manufacture, 132, 17-35 https://doi.org/10.1016/j.ijmachtools.2018.04.005
- [2] Del Sol, I., Rivero, A., Salguero, J., Fernández-Vidal, S. R., Marcos, M. (2017). Tool-path effect on the geometric deviations in the machining of UNS A92024 aeronautic skins. Procedia Manufacturing, 13, 639-646. https://doi.org/10.1016/j.promfg.2017.09.134
- [3] Zhong, L., Bi, Q., Huang, N., Wang, Y. (2018). Dynamic accuracy evaluation for five-axis machine tools using S trajectory deviation based on R-test measurement. International Journal of Machine Tools and Manufacture, 125, 20-33. https://doi.org/10.1016/j.ijmachtools.2017.11.003
- [4] He, G., Sang, Y., Wang, H., Sun, G. (2018). A profile error evaluation method for freeform surface measured by sweep scanning on CMM. Precision Engineering. https://doi.org/10.1016/j.precisioneng.2018.12.008
- [5] Jia, Z. Y., Zhao, X. X., Ma, J. W., Chen, S. Y., Qin, F. Z., Liu, Z. (2019). Toolpath generation in sub-regional processing with constraint of constant scallop-height at boundary for complex curved surface. Precision Engineering, 55, 217-230. https://doi.org/10.1016/j.precisioneng.2018.09.009
- [6] Lazoglu, I., Manav, C., Murtezaoglu, Y. (2009). Tool path optimization for free form surface machining. CIRP annals, 58(1), 101-104. https://doi.org/10.1016/j.cirp.2009.03.054
- [7] Pezer, D. (2016). Efficiency of Tool Path Optimization Using Genetic Algorithm in Relation to the Optimization Achieved with the CAM Software. Procedia Engineering, 149, 374-379.
https://doi.org/10.1016/j.proeng.2016.06.681
- [8] Ma, J. W., Jia, Z. Y., Song, D. N., Wang, F. J., Si, L. K. (2018). Machining error reduction by combining of feed-speed optimization and toolpath modification in high-speed machining for parts with rapidly varied geometric features. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(4), 557-571. https://doi.org/10.1177/0954406216688497
- [9] Zhang, X., Zhang, J., Zheng, X., Pang, B., Zhao, W. (2017). Tool orientation optimization of 5-axis ball-end milling based on an accurate cutter/workpiece engagement model. CIRP Journal of Manufacturing Science and Technology, 19, 106-116. http://dx.doi.org/10.1016/j.cirpj.2017.06.003
- [10] Yuen, A., Altintas, Y. (2016). Trajectory generation and control of a 9 axis CNC micromachining center. CIRP Annals, 65(1), 349-352. http://dx.doi.org/10.1016/j.cirp.2016.04.098
- [11] Yi, J., Chu, C. H., Kuo, C. L., Li, X., Gao, L. (2018). Optimized tool path planning for five-axis flank milling of ruled surfaces using geometric decomposition strategy and multi-population harmony search algorithm. Applied Soft Computing, 73, 547-561. https://doi.org/10.1016/j.asoc.2018.08.041
- [12] Tunc, L. T. (2019). Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models. Robotics and Computer-Integrated Manufacturing, 56, 212-221.
https://doi.org/10.1016/j.rcim.2018.10.002
- [13] Takasugi, K., Asakawa, N. (2018). Parameter-based spiral tool path generation for free-form surface machining. Precision Engineering, 52, 370-379. https://doi.org/10.1016/j.precisioneng.2018.01.013
- [14] Tajima, S., Sencer, B., Shamoto, E. (2018). Accurate interpolation of machining tool-paths based on FIR filtering. Precision Engineering, 52, 332-344. https://doi.org/10.1016/j.precisioneng.2018.01.016
- [15] Tulsyan, S., Altintas, Y. (2015). Local toolpath smoothing for five-axis machine tools. International Journal of Machine Tools and Manufacture, 96, 15-26. http://dx.doi.org/10.1016/j.ijmachtools.2015.04.014
- [16] Tunc, L. T., Budak, E., Bilgen, S., Zatarain, M. (2016). Process simulation integrated tool axis selection for 5-axis tool path generation. CIRP Annals, 65(1), 381-384. http://dx.doi.org/10.1016/j.cirp.2016.04.113
- [17] Yang, J., Chen, Y., Chen, Y., Zhang, D. (2015). A tool path generation and contour error estimation method for four-axis serial machines. Mechatronics, 31, 78-88. http://dx.doi.org/10.1016/j.mechatronics.2015.03.001
- [18] Uchiyama, N. (2013). Estimation of tool orientation contour errors for five-axis machining. Robotics and Computer-Integrated Manufacturing, 29(5), 271-277. http://dx.doi.org/10.1016/j.rcim.2013.01.002
- [19] Ma, J. W., Song, D. N., Jia, Z. Y., Hu, G. Q., Su, W. W., Si, L. K. (2018). Tool-path planning with constraint of cutting force fluctuation for curved surface machining. Precision Engineering, 51, 614-624.
https://doi.org/10.1016/j.precisioneng.2017.11.002
- [20] Shahzadeh, A., Khosravi, A., Robinette, T., Nahavandi, S. (2018). Smooth path planning using biclothoid fillets for high speed CNC machines. International Journal of Machine Tools and Manufacture, 132, 36-49. https://doi.org/10.1016/j.ijmachtools.2018.04.003
- [21] Myeong-Woo Cho, Tae-il Seo, Hyuk-Dong Kwon .(2003). Integrated error compensation method using OMM system for profile milling operation . Journal of Materials Processing Technology. 136 88–99
- [22] Rao V.S., Rao P.V.M.. (2006) .Tool deflection compensation in peripheral milling of curved geometries . International Journal of Machine Tools & Manufacture. 46 (2006) 2036–2043 https://doi:10.1016/j.ijmachtools.2006.01.004
- [23] Hsu Y.Y., Wang S.S.(2007). A new compensation method for geometry errors of five-axis machine tools . International Journal of Machine Tools & Manufacture. 47 352–360 https://doi:10.1016/j.ijmachtools.2006.03.008
- [24] Rahou .M, Sebaa .F Cheikh .A .(2017). Study and Modeling of Machining Errors on the NC Machine Tool. International Journal of Mechanical Engineering and Robotics Research, pp. 54-57. https://doi: 10.18178/ijmerr.6.1.54-57
- [25] Rahou, M., Sebaa, F., Cheikh, A. Benmansour, S. A. (2017). Error compensation in machine tools NC. Global Journal of Computer Sciences: Theory and Research. 7(1), 24-30, www.gjcs.eu.