Review
BibTex RIS Cite

POLYMERS IN VACCINE FORMULATION

Year 2016, Volume: 34 Issue: 3, 439 - 451, 01.09.2016

Abstract

Synthetic peptides that bind to carrier polymer molecules to use recent vaccine technology can create a higher immune response, remain longer in biological systems and they may be more stable against degrading. This is why synthetic peptides are given to living systems either by creating a microatmosphere or a conjugate. In these systems where natural or synthetic polymers can be used; synthetic carriers have more advantage compared to natural carriers such as obtainingproducts with high purity yields, manipulating structure and the molecular weight as desired, creating specific effects with simple additions of various chemical groups to the structure.
In this study, linear and spherical polymeric carrier were examined for synthetic peptide, several examples are given to polymeric carrier and examined immune response and their advantage.

References

  • [1] Akbuğa J., “Farmasötik Biyoteknoloji Ürünleri”, [Internet], Available from;http://www.e-kutuphane.teb.org.tr/pdf/mised/mayis02/10.pdf, [accessed 05.09.2015].
  • [2] Büyüktanır Ö.,“Günümüzde Biyoteknolojik Bakteriyel Aşılar”, Atatürk Üniversitesi Vet. Bil. Derg.5 (2): 97-105, 2010.
  • [3] Altınsoy N., “Aşı Üretim Teknikleri ve Kontrolü”, A.Ü. Veteriner Fakültesi, Mikrobiyoloji Anabilim Dalı, Ankara, 2007.
  • [4] Skwarczynski M., Toth I., “Peptide-based synthetic vaccines”, Chemical Science, 7:2- 842-854, 2016.
  • [5] Kahraman G., “Bor nötron yakalama terapisi için bor içeren polimerik taşıyıcı tasarımı ve hücre kültürlerinde kullanımları”, Hacettepe Üniversitesi FBE Kimya Mühendisliği Anabilimdalı Yükssek lisans tezi, 2004.
  • [6] Varypataki E.M., et.al., “Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles”, Journal of Controlled Release, 226: 98–106, 2016.
  • [7] [Internet] Available from; “http://www.diss.fuberlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000001958/1_Chapte r1Introduction.pdf?hosts=” [accessed 15.05.2015].
  • [8] Muhamad I., et.al., “Designing Polymeric Nanoparticles for Targeted Drug Delivery System”, Nanomedicine, 287.
  • [9] Janssen M., et.al., Drugs and Polymers for Delivery Systems in OA Joints: Clinical Needs and Opportunities, Polymers, 6(3), 799-819, 2014.
  • [10] Rebouças J., Esparza I., et.al., “Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy”, Journal of Biomedicine and Biotechnology,10.1155/2012/474605, 2012.
  • [11] Şengel-Türk T., Hasçicek C., “Polimerik Nanopartiküler İlaç Taşıyıcı Sistemlerde Yüzey Modifikasyonu”, Ankara Ecz. Fak. Derg., 38 (2) 137-154, 2009.
  • [12] Öner F., “Nanopartiküller:Kolloidal Katı İlaç Taşıyıcı Sistemler”, FABAD 8:250-260, 1983.
  • [13] Fattal E., “Nanoparticle and liposomes for drug targetting”, Berlin, pp 1-4, 1997.
  • [14] S. Gomez C. Gamazo, B. S. Roman, M. Ferrer, M. L. Sanz, and J.M. Irache, “Gantrez_AN nanoparticles as an adjuvant for oral immunotherapy with allergens,” Vaccine, vol. 25, no. 29, pp. 5263–5271, 2007.
  • [15] Correia-Pintoa J.F., Csaba N., Alonso M. J., “Vaccine delivery carriers: Insights and future perspective”, International Journal of Pharmaceutics 440 (2013) 27– 38, 2012.
  • [16] Powell S.B., Andrianov A.K., Fusco P.C., “Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes”, Clin Exp Vaccine Res, 4:23-45, 2015.
  • [17] Özcan İ., “Effects of sterilization techniques on the PEGylated poly (γ-benzyl-L glutamate) (PBLG) nanoparticles”, Acta Pharmaceutica Sciencia 51: 211-218, 2009.
  • [18] Christophe Q.,“Adjuvanted nanoparticulate seasonal influenza vaccines”, Leiden University, 2013.
  • [19] Yu D., et.el., “PEG-PBLG Nanoparticle-mediated HSV-TK/GCV Gene Therapy for Oral Squamous cell Carcinoma”, Nanomedicine 3(6):813-821, 2008.
  • [20] Makadia K.H., Steven J.S., “Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier”, Polymers (Basel). 2011 Sep 1; 3(3): 1377–1397, 2011.
  • [21] Derman S., Kızılbey K., Akderste Z., “Polymeric nanoparticle”, Sigma 31:107-120, 2013.
  • [22] Bharali D.J., Pradhan V., Elkin G. et al., “Novel nanoparticles for the delivery of recombinant hepatitis B vaccine,” Nanomedicine, vol. 4, no. 4, pp. 311–317, 2008.
  • [23] Liu L., et. al., “Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles”, Journal of Controlled Release, S0168-3659(16)30045, 2016.
  • [24] Mi L., “Ultrasound-activated anti-infective coatings and devices made thereof”, WO2006019848 A1, 2006.
  • [25] Başbağ A., “Development of Alternatıve Polymerıc Carrıers for Cyclosporıne a Release and İnvestıgatıon of ın vıtro Release Kinetics”, Hacettepe Üniversitesi Kimya Mühendisliği Anabilim, Yüksek Lisans Tezi, 2010.
  • [26] Sezgin Z., Yüksel N., Baykara T., “İlaç taşıyıcı sistemler olarak polimerik misellerin hazırlanması ve karakterizasyonu”, Ankara Ecz. Fak. Derg, 32(2) 125-142.
  • [27] Kahraman, E., “Polimerik miseller ve nazal yol ile uygulanmaları”, İstanbul Üniversitesi Eczacılık Fakültesi Dergisi, 41, 2010.
  • [28] Mansuroğlu B., “Biyohibrid yapılı ve biyotaklitçi polimer-peptid konjugatlarının geliştirilmesi”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Biyomühendislik Anabilim Dalı, Doktora Tezi, 2007.
  • [29] Çağdaş M., Sezer A., Bucak S., “Liposomes as Potential Drug Carrier Systems for Drug Delivery”, 978-953-51-1628-8, 2014.
  • [30] Gurhan Deliloğlu S.I., Akdeste M.M., Akdeste Z.M., Aynagoz G., Unver G., Unal N., Celik N.,“Preparation of synthetic peptide FMDV vaccine with newly developed antigen-polymere conjugates be used as immunogen and vaccine in veterinary medicine”, In:Report of the Session of the Research Group of the Standing Technical Committee of the European Commission for the Control of Foot-and-Mouth Disease, Appendix41, pp.349-357, FAO, 2002.
  • [31] Lankalapalli S., Kolapalli V.R.M., “Polyelectroyte complex”,Indian J Pham Sci”., 71(5):481-487, 2009.
  • [32] Mustafaev M.I., “Biyopolimerler”, TÜBİTAK Marmara Arastırma Merkezi (MAM) Matbaası, Gebze, Kocaeli, 1996.
  • [33] Mustafaev M., Yucel F., Cirakoglu B., Bermek E., “Immune response to progesterone involved in Cu2+-mediated polyanion-protein complex-antigen specificity and affinity of hybridoma clones”, Immunology Letters, 52 (2-3): 63-68, 1996.
  • [34] Mustafaev M., “Polyelctrolytes in İmmunology: Fundamentals and Perspective”, Tr. J. of Chemistry 20:126-138, 1995.
  • [35] Topuzogulları M., Koç Çakır R., et.al., “Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis”, Journal of Biomedical Science, 2013.
  • [36] Kabanov V.A., “From synthetic polyelectrolytes to polymersubunit vaccines”, Pure Appl. Chem., Vol. 76, No. 9, pp. 1659–1677, 2004.
  • [37] Mansuroğlu B., Mustafaeva A. Z., “Characterization of water-soluble conjugates of polyacrylic acid and antigenic peptide of FMDV by size exclusion chromatography with quadruple detection”, Materials Science and Engineering, 112–118, 2012.
  • [38] Karahan M., “Metal İçeren Fonksiyonel Biyopolimer Sistemlerin Geliştirilmesi”, Yıldız Teknik Üniversitesi FBE Kimya Anabilim Dalı Biyokimya Anabilim Dalı, 2009.
  • [39] Petrov R.V., Khaitov R.M., Zhdanovt V.M., Sinyakov M.S., Norimov A.Sh., Nekrasov A.V., Podchernyaevat R.Y., Kharitonenkovi I.G., ve Shchipanovat M.V., “Influenza Virus Antigens Conjugated with A Synthetic Polyelectrolyte: A Novel Model of Vaccines, Vaccine, Vol. 3, 393, 1985.
  • [40] Uelzmann H., “Copolymers of Acrylic Acid and N-Vinylpyrrolidone-2” Journal of Polymer Science,XXXIII:377-379, 1958
  • [41] Hemalatha P., et.al., “Antibacterial Properties of Poly(N-Vinylpyrrolidone-co-Acrylic Acid)/ Diethylaminoethanol Ester”, Indian Journal of Advances in Chemical Science 2:50-54, 2014.
  • [42] Derman S., Kadriye K., Mansuroglu B., Mustafaeva Z., “Poly(N-Vinyl-2-Pyrrolidone-co-Acrylic Acid)- Bovine Serum Albumin Complex Formation Studied by HPLC and UV/Vis Spectroscopy”, Romanian Biotechnological Letters Vol.17, No.4, 2011.
  • [43] Synpol, [Internet] “Polyoxidonium”, Available from: http://www.drugfuture.com/chemdata/polyoxidonium.html, [accessed 02.10.2015].
  • [44] “PLGA-PEG Block Copolymers for Drug Formulations”, [Internet], Available from; http://www.drug-dev.com/Main/Back-Issues/PLGAPEG-Block-Copolymers-for-Drug-Formulations-406.aspx, [accessed 22.09.2015].
  • [45] Oskay E., “Hücre Kültüründe Tümör Hücrelerine Akıllı PolimerikTasıyıcılar ile Antisense Oligonükleotit Aktarımı”, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Biyomühendislik Anabilimdalı Yüksek Lisans Tezi, 2005.
  • [46] Almeida H.,et.al., “Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery”, Journal of Applied Pharmaceutical Science 02 (06); 2012: 01- 10, 2012.
  • [47] [Internet] Available from: “http://www.tuat.ac.jp/~tokuyama/research.html” [accessed 20.05.2015].
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Zeynep Mustafaeva This is me

Publication Date September 1, 2016
Submission Date April 5, 2016
Published in Issue Year 2016 Volume: 34 Issue: 3

Cite

Vancouver Mustafaeva Z. POLYMERS IN VACCINE FORMULATION. SIGMA. 2016;34(3):439-51.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/