Yıl 2023,
Cilt: 41 Sayı: 1, 145 - 155, 14.03.2023
Maryam Bajalan
Rashid Rezaeı
Karim Sameı
Kaynakça
- REFERENCES
- [1] Aydogdu I. Codes over Zp[u]/〈ur〉 × Zp[u]/〈us〉. J Algebra Comb Discrete Struct Appl 2019;32:39–51. [CrossRef]
- [2] Aydogdu I, Abualrub T, Siap, I. On 22-additive codes. Int J Comput Math 2014;92:1806–1814. [CrossRef]
- [3] Aydogdu I, Siap I. On pprs-additive codes. Linear Multilinear Algebra 2014;63:2089–2102. [CrossRef]
- [4] Aydogdu I, Siap I, Ten-Valls R. On the structure of 22u3 -linear and cyclic codes. Finite Fields Their Appl 2017;48:241–260. [CrossRef]
- [5] Bilal M, Borges J, Dougherty ST, Fernández-Córdoba C. Maximum distance separable codes over 42 ´ and ´42. Des Codes Cryptogr 2010;61:31=40.
- [6] Borges J, Fernández-Córdoba C. A characterization of 22[]u -linear codes. Des Codes Cryptogr 2017; 86:1377–1389. [CrossRef]
- [7] Borges J, Fernandez-Cordoba C, Ten-Valls R. 24- additive cyclic codes, generator polynomials, and dual codes. IEEE Trans Inf Theory 2016;62:6348–6354.
[CrossRef]
- [8] Borges J, Fernández-Córdoba C, Ten-Valls R. Linear and cyclic codes over direct product of finite chain rings. Math Methods Appl Sci 2017;41:6519–652.
[CrossRef]
- [9] Constantinescu I, Heise W. A metric for codes over residue class rings of integers. Probl Inf Transm 1997;33:22–28.
- [10] Dinh HQ, Bag T, Kewat PK, Pathak S, Upadhyay AK, Chinnakum W. Constacyclic codes of length (pr, ps) over mixed alphabets. J Appl Math Comput
2021;67:807–832. [CrossRef]
- [11] Diao L, Gao J, Lu J. Some results on ppv[]-addi-tive cyclic codes. Adv Math Commun 2020;14:555–572. [CrossRef]
- [12] Dinh HQ, Pathak S, Bag T, Upadhyay AK, Chinnakum W. A study of qR-cyclic codes and their applications in constructing quantum codes. IEEE Access
2020;8:190049–190063. [CrossRef]
- [13] Dinh HQ, Pathak S, Upadhyay AK, Yamaka W. New DNA codes from cyclic codes over mixed alphabets. Mathematics 2020;8:1977. [CrossRef]
- [14] Dougherty ST. Algebraic Coding Theory Over Finite Commutative Rings. 1st ed. Berlin: Springer; 2017.[CrossRef]
- [15] Dougherty ST, Kim JL, Kulosman H. MDS codes over finite principal ideal rings. Des Codes Cryptogr 2008;50:77–92. [CrossRef]
- [16] Dougherty ST, Kim JL, Kulosman H, Liu H. Self-dual codes over commutative Frobenius rings. Finite Fields Their Appl 2010;16:14–26. [CrossRef]
- [17] Dougherty ST, Kim JL, Liu H. Constructions of self-dual codes over finite commutative chain rings. Int J Inf Cod Theory 2010;1:171. [CrossRef]
- [18] Gao J, Diao L. pp[]u -additive cyclic codes. Int J Inf Cod Theory 2018;5:1–17. [CrossRef]
- [19] Grassl M. Bounds on the minimum distance of lin-ear codes and quantum codes. Available at: http://www.codetables.de. Accessed on May 22, 2023.
[CrossRef]
- [20] Greferath M, Schmidt SE. Gray isometries for finite chain rings and a nonlinear ternary code. IEEE Trans Inf Theory 1999;45:2522–2524. [CrossRef]
- [21] Jitman J, Udomkavanich P. The gray image of codes over finite chain rings. Int J Contemp Math Sci 2010;5:449–458.
- [22] Li J, Gao J, Fu FW, Ma F. qR-linear skew consta-cyclic codes and their application of constructing quantum codes. Quantum Inf Process 2020;19:193.
[CrossRef]
- [23] MacWilliams F, Sloane N. The Theory of Error-Correcting Codes. 1st ed. Amsterdam: North-Holland; 1977.
- [24] Mahmoudi S, Samei K. SR-additive codes. Bull Korean Math Soc 2019;56:1235–1255. [CrossRef]
[25] Melakhessou A, Aydin N, Hebbache Z, Guenda K. q+()uq -linear skew constacyclic codes. J Algebra Comb Discrete Struct Appl 2020;7:85–101.
[CrossRef]
- [26] Norton GH, Sălăgean A. On the structure of lin-ear and cyclic codes over a finite chain ring. Appl Algebra Eng Commun Comput 2000;10:489–506.
[CrossRef]
- [27] Rifa J, Pujol J. Translation-invariant propelinear codes. IEEE Trans Inf Theory 1997;43:590–598. [CrossRef]
- [28]Samei K, Mahmoudi S. Singleton bounds for R- additive codes. Adv Math Commun 2018;12:107-114.
- [29] Shi M, Wu R, Krotov DS. On ppk -additive codes and their duality. IEEE Trans Inf Theory 2019;65:3841–3847. [CrossRef]
- [30] Wu R, Shi M. Some classes of mixed alphabet codes with few weights. IEEE Commun Lett 2021;25:1431–1434. [CrossRef]
On codes over product of finite chain rings
Yıl 2023,
Cilt: 41 Sayı: 1, 145 - 155, 14.03.2023
Maryam Bajalan
Rashid Rezaeı
Karim Sameı
Öz
In this paper, codes over the direct product of two finite commutative chain rings are studied. The standard form of the parity-check matrix is determined. The structure of self-dual codes is described. A distance preserving Gray map from the direct product of chain rings to a finite field is defined. Two upper bounds on minimum distance are obtained.
Kaynakça
- REFERENCES
- [1] Aydogdu I. Codes over Zp[u]/〈ur〉 × Zp[u]/〈us〉. J Algebra Comb Discrete Struct Appl 2019;32:39–51. [CrossRef]
- [2] Aydogdu I, Abualrub T, Siap, I. On 22-additive codes. Int J Comput Math 2014;92:1806–1814. [CrossRef]
- [3] Aydogdu I, Siap I. On pprs-additive codes. Linear Multilinear Algebra 2014;63:2089–2102. [CrossRef]
- [4] Aydogdu I, Siap I, Ten-Valls R. On the structure of 22u3 -linear and cyclic codes. Finite Fields Their Appl 2017;48:241–260. [CrossRef]
- [5] Bilal M, Borges J, Dougherty ST, Fernández-Córdoba C. Maximum distance separable codes over 42 ´ and ´42. Des Codes Cryptogr 2010;61:31=40.
- [6] Borges J, Fernández-Córdoba C. A characterization of 22[]u -linear codes. Des Codes Cryptogr 2017; 86:1377–1389. [CrossRef]
- [7] Borges J, Fernandez-Cordoba C, Ten-Valls R. 24- additive cyclic codes, generator polynomials, and dual codes. IEEE Trans Inf Theory 2016;62:6348–6354.
[CrossRef]
- [8] Borges J, Fernández-Córdoba C, Ten-Valls R. Linear and cyclic codes over direct product of finite chain rings. Math Methods Appl Sci 2017;41:6519–652.
[CrossRef]
- [9] Constantinescu I, Heise W. A metric for codes over residue class rings of integers. Probl Inf Transm 1997;33:22–28.
- [10] Dinh HQ, Bag T, Kewat PK, Pathak S, Upadhyay AK, Chinnakum W. Constacyclic codes of length (pr, ps) over mixed alphabets. J Appl Math Comput
2021;67:807–832. [CrossRef]
- [11] Diao L, Gao J, Lu J. Some results on ppv[]-addi-tive cyclic codes. Adv Math Commun 2020;14:555–572. [CrossRef]
- [12] Dinh HQ, Pathak S, Bag T, Upadhyay AK, Chinnakum W. A study of qR-cyclic codes and their applications in constructing quantum codes. IEEE Access
2020;8:190049–190063. [CrossRef]
- [13] Dinh HQ, Pathak S, Upadhyay AK, Yamaka W. New DNA codes from cyclic codes over mixed alphabets. Mathematics 2020;8:1977. [CrossRef]
- [14] Dougherty ST. Algebraic Coding Theory Over Finite Commutative Rings. 1st ed. Berlin: Springer; 2017.[CrossRef]
- [15] Dougherty ST, Kim JL, Kulosman H. MDS codes over finite principal ideal rings. Des Codes Cryptogr 2008;50:77–92. [CrossRef]
- [16] Dougherty ST, Kim JL, Kulosman H, Liu H. Self-dual codes over commutative Frobenius rings. Finite Fields Their Appl 2010;16:14–26. [CrossRef]
- [17] Dougherty ST, Kim JL, Liu H. Constructions of self-dual codes over finite commutative chain rings. Int J Inf Cod Theory 2010;1:171. [CrossRef]
- [18] Gao J, Diao L. pp[]u -additive cyclic codes. Int J Inf Cod Theory 2018;5:1–17. [CrossRef]
- [19] Grassl M. Bounds on the minimum distance of lin-ear codes and quantum codes. Available at: http://www.codetables.de. Accessed on May 22, 2023.
[CrossRef]
- [20] Greferath M, Schmidt SE. Gray isometries for finite chain rings and a nonlinear ternary code. IEEE Trans Inf Theory 1999;45:2522–2524. [CrossRef]
- [21] Jitman J, Udomkavanich P. The gray image of codes over finite chain rings. Int J Contemp Math Sci 2010;5:449–458.
- [22] Li J, Gao J, Fu FW, Ma F. qR-linear skew consta-cyclic codes and their application of constructing quantum codes. Quantum Inf Process 2020;19:193.
[CrossRef]
- [23] MacWilliams F, Sloane N. The Theory of Error-Correcting Codes. 1st ed. Amsterdam: North-Holland; 1977.
- [24] Mahmoudi S, Samei K. SR-additive codes. Bull Korean Math Soc 2019;56:1235–1255. [CrossRef]
[25] Melakhessou A, Aydin N, Hebbache Z, Guenda K. q+()uq -linear skew constacyclic codes. J Algebra Comb Discrete Struct Appl 2020;7:85–101.
[CrossRef]
- [26] Norton GH, Sălăgean A. On the structure of lin-ear and cyclic codes over a finite chain ring. Appl Algebra Eng Commun Comput 2000;10:489–506.
[CrossRef]
- [27] Rifa J, Pujol J. Translation-invariant propelinear codes. IEEE Trans Inf Theory 1997;43:590–598. [CrossRef]
- [28]Samei K, Mahmoudi S. Singleton bounds for R- additive codes. Adv Math Commun 2018;12:107-114.
- [29] Shi M, Wu R, Krotov DS. On ppk -additive codes and their duality. IEEE Trans Inf Theory 2019;65:3841–3847. [CrossRef]
- [30] Wu R, Shi M. Some classes of mixed alphabet codes with few weights. IEEE Commun Lett 2021;25:1431–1434. [CrossRef]