Research Article
BibTex RIS Cite
Year 2024, Volume: 42 Issue: 3, 831 - 844, 12.06.2024

Abstract

References

  • [1] Zhong D, Ping Z, KangXin W. Theory and practice of construction simulation for high rockfill dam. Sci China Technol Sci 2007;50:51–61. [CrossRef]
  • [2] Lu M, Chen W, Shen X, Lam HC, Liu J. Positioning and tracking construction vehicles in highly dense urban areas and building construction site. Autom Constr 2007;16:647–656. [CrossRef]
  • [3] Vahdatikhaki F, Hammad A, Siddiqui H. Optimization-based excavator pose estimation using real-time location systems. Autom Constr 2015;56:76–92. [CrossRef]
  • [4] Hammad A, Vahdatikhaki F Zhang C. A novel integrated approach to project-level automated machine control/guidance systems in construction projects. J Inf Technol in Constr 2013;18:162–181.
  • [5] Jurasz J, Kley K. A Cost-effective positioning solution for asphalt rollers based on low-cost DGPS receivers. In proceedings of the 19th International Symposium on Automation
  • and Robotics in Construction; 2002 Sept 23–25; Washington, USA. 2002. p. 403–408. [CrossRef]
  • [6] Hung WH, Kang SCJ. Automatic clustering method for real-time construction simulation. Adv Eng Inform 2014:28:138–152. [CrossRef]
  • [7] Oloufa A, Ikeda M, Oda H. Situational awareness of construction equipment using GPS, wireless and web technologies. Autom Constr 2003;12:737–748. [CrossRef]
  • [8] Oloufa A, Ikeda M, Oda H. GPS-based wireless collision detection of construction equipment. 19th International Symposium on Automation and Robotics in Construction; 2002 Sept 23–25; Washington, USA. 2002. p. 461–466. [CrossRef]
  • [9] Hammad A, Vahdatikhaki F, Zhang C, Mawlana M, Doriani A. Towards the smart construction site: Improving productivity and safety of construction projects using multi-agent systems, real-time simulation and automated machine control. In proceedings of the IEEE Proceedings of the 2012 Winter Simulation Conference (WSC); 2012 Dec 1–12; Berlin, Germany. IEEE; 2012. [CrossRef]
  • [10] ElNimr A, Fagiar M, Mohamed Y. Two-way integration of 3D visualization and discrete event simulation for modeling mobile crane movement under dynamically changing site layout. Autom Constr 2016;68:235–248.
  • [11] Vahdatikhaki F, Hammad A. Risk-based look-ahead workspace generation for earthwork equipment using near real-time simulation. Autom Constr 2015;58:207–220. [CrossRef]
  • [12] Blackmore BS, Griepentrog HW. Autonomous Vehicles and Robots. In: Munac A, editor. CIGR handbook of agricultural engineering. Michigan, USA: ASABE; 2006. p. 204–215.
  • [13] Murad Ç, Yıldız E. Sera Üretim Mekanizasyonunda Robotik Uygulamalar: Literatür Çalışması. In: Marakoğlu T, editor. Proceedings of the 28. Ulusal Tarımsal Mekanizasyon Kongresi; 2013 Sept 4–6; Konya, Türkiye. Aybil Yayınları; 2013. p. 269–281.
  • [14] Kılıç A, Kapucu S. Modüler yeniden yapılandırılabilir robot modülü OMNIMO’nun tasarımı ve üretimi. J Fac Eng Archit Gazi Univ 2016;31:521–530. [CrossRef]
  • [15] Bettemir Ö, Tombaloglu B. Kürüme için küçük ölçekli otonom iş makinesi tasarımı ve üretimi. J Fac Eng Archit Gazi Univ 2013;28:617–625.
  • [16] Yıldırım A, Bettemir ÖH. Otonom dozer için küreme algoritması geliştirilmesi. Düzce Üniv Bil Teknol Derg 2018;6:292–308. [CrossRef]
  • [17] Bettemir ÖH. Otonom iş makinesinde çoklu CP DGPS kullanımı etkisinin benzetim ile tayini. In proceedings of the 2013 Otomatik Kontrol Ulusal Toplantısı; 2013 Sept 26–28; Malatya, Türkiye. 2013. p. 733–737.
  • [18] Bettemir ÖH. Development of mini scale autonomous robot grader for road constructions. In proceedings of the International Workshop on Unmanned Vehicles; 2010 Jun 10–12; İstanbul, Türkiye. 2010. p. 1–16.
  • [19] Fall A, Weber B, Pakpour M, Lenoir N, Shahidzadeh N, Fiscina J, et al. Sliding friction on wet and dry sand. Phys Rev Lett 2014;112;175502. [CrossRef]
  • [20] Klanfar M, Kujundžić T, Vrkljan D. Calculation analysis of bulldozer's productivity in gravitational transport on open pits. Teh Vjesn 2014;21:517–523.
  • [21] Patel BP, Prajapati JM, Gadhvi BJ. An excavation force calculations and applications: An analytical approach. Int J Eng Sci Technol 2011;3:3831–3837.
  • [22] McKyes E, Ali OS. The cutting of soil by narrow blades. J Terramech 1977;14:43–58. [CrossRef]
  • [23] Zeng X, Burnoski L, Agui J, Wilkinson A. Calculation of excavation force for ISRU on lunar surface. Available at: https://ntrs.nasa.gov/api/citations/20070018151/downloads/20070018151.pdf. Accessed on May 15, 2024.
  • [24] Xia K. A framework for earthmoving blade/soil model development. J Terramech 2008;45:147–165. [CrossRef]
  • [25] Yıldırım A, Bettemir ÖH. Visualisation of grading simulation. In Proceedings of the International Civil Engineering & Architecture Conference; 2019 Apr 17 – 20; Trabzon, Turkey. 2019.
  • [26] Nunnally SW. Construction Methods and Management. 6th edition. McGraw-Hill, USA: Prentice Hall; 2003.
  • [27] Holz D, Azimi A, Teichmann M, Mercier S. Real-time simulation of mining and earthmoving operations: a level set-based model for tool-induced terrain deformations. In Proceedings of the International Symposium on Automation and Robotics in Construction; 2013 Aug 11–15; Montreal, Canada. Curran Associates; 2013. p. 468–477. [CrossRef]
  • [28] Reece AR. The fundamental equation of earthmoving mechanics. In proceedings of 1964 Institution of Mechanical Engineers Conference; 1964 Jun 1.
  • [29] Kato, K. Wear in relation to friction - A review. Wear 2000;241:151–157. [CrossRef]
  • [30] Hoornaert T, Hua ZK, Zhang JH. Hard Wear-Resistant Coatings: A Review. In: Luo J, Meng Y, Shao T, Zhao Q, editors. Advanced Tribolgy. Heidelberg, Berlin: Springer; 2009. p. 774–779. [CrossRef]
  • [31] Duarte I, Ferreira JMF. Composite and nanocomposite metal foams. Materials (Basel) 2016;9:79. [CrossRef]
  • [32] Bolat Ç, Akgün İC, Gökşenli A. Effects of particle size, bimodality and heat treatment on mechanical properties of pumice reinforced aluminum syntactic foams produced by cold chamber die casting. China Foundry 2021;18:529–540. [CrossRef]
  • [33] Ergene B, Bolat Ç. Determination of thermal stress and elongation on different ceramic coated Ti-6Al-4V alloy at elevated temperatures by finite element method. Sigma J Eng Nat Sci 2020;38:2013–2026.
  • [34] Steffensen JF. Interpolation. 2nd ed. Mineola, NY: Courier Corporation; 2006.
  • [35] Shi WZ, Li QQ, Zhu CQ. Estimating the propagation error of DEM from higher‐order interpolation algorithms. Int J Remote Sens 2005;26:3069–3084. [CrossRef]
  • [36] Perissin D, Rocca F. High-accuracy urban DEM using permanent scatterers. IEEE Trans Geosci Remote Sens 2006;44:3338–3347. [CrossRef]
  • [37] Caterpillar, 1979. Fundamentals of Earthmoving. Texas, US: Caterpillar Tractor Company; 1963.
  • [38] Bettemir ÖH. Prediction of georeferencing precision of pushbroom scanner images. IEEE Trans Geosci Remote Sens 2011;50:831–838. [CrossRef]

Cost and duration estimation of autonomous grading algorithm by simulation

Year 2024, Volume: 42 Issue: 3, 831 - 844, 12.06.2024

Abstract

Estimation of cost and duration of grading a particular area provides important information for contractors and construction machine manufacturers. In this study, cost and duration of excavation by dozer is estimated by simulating the movements of the dozer. Specifications of the dozer, soil conditions and site conditions are defined to the simulator. The simulation considers tire penetration, rolling, grade, hauling, as well as cutting resistances and estimates the necessary force to be applied. The simulation implements an autonomous grading algorithm established for electric powered dozers which starts grading from a local highest point to prevent uphill excavation and hauling. The algorithm determines the necessary maneuvers to reach local highest point, excavate or haul the earth pile to the dump area. The simulation runs until the objected elevation is obtained at each portion of the excavation site. The simulator calculates the consumed energy, time, and total cost of the excavation. The excavations of 30x45 square meter area by one existing electric dozer and five updated versions of it are simulated. The simulation of the excavation is computed in 23 seconds for the smallest and 10 seconds for the largest dozer. The cost of grading and pushing the excavated material at most 20 meters away is estimated as less than 5 cents/m3 for the lead-acid battery powered dozer and 8 cents/m3 in the average for the lithium-ion battery powered dozers. The simulation revealed that electric powered dozers have less unit excavation cost than diesel powered ones, also larger dozers consumes less energy than the smaller ones. The developed simulation technique is implemented without any numerical errors and the technique can be beneficial for the construction machine manufacturers to optimize their designs and for the contractors to select the most suitable construction machine among the present alternatives.

References

  • [1] Zhong D, Ping Z, KangXin W. Theory and practice of construction simulation for high rockfill dam. Sci China Technol Sci 2007;50:51–61. [CrossRef]
  • [2] Lu M, Chen W, Shen X, Lam HC, Liu J. Positioning and tracking construction vehicles in highly dense urban areas and building construction site. Autom Constr 2007;16:647–656. [CrossRef]
  • [3] Vahdatikhaki F, Hammad A, Siddiqui H. Optimization-based excavator pose estimation using real-time location systems. Autom Constr 2015;56:76–92. [CrossRef]
  • [4] Hammad A, Vahdatikhaki F Zhang C. A novel integrated approach to project-level automated machine control/guidance systems in construction projects. J Inf Technol in Constr 2013;18:162–181.
  • [5] Jurasz J, Kley K. A Cost-effective positioning solution for asphalt rollers based on low-cost DGPS receivers. In proceedings of the 19th International Symposium on Automation
  • and Robotics in Construction; 2002 Sept 23–25; Washington, USA. 2002. p. 403–408. [CrossRef]
  • [6] Hung WH, Kang SCJ. Automatic clustering method for real-time construction simulation. Adv Eng Inform 2014:28:138–152. [CrossRef]
  • [7] Oloufa A, Ikeda M, Oda H. Situational awareness of construction equipment using GPS, wireless and web technologies. Autom Constr 2003;12:737–748. [CrossRef]
  • [8] Oloufa A, Ikeda M, Oda H. GPS-based wireless collision detection of construction equipment. 19th International Symposium on Automation and Robotics in Construction; 2002 Sept 23–25; Washington, USA. 2002. p. 461–466. [CrossRef]
  • [9] Hammad A, Vahdatikhaki F, Zhang C, Mawlana M, Doriani A. Towards the smart construction site: Improving productivity and safety of construction projects using multi-agent systems, real-time simulation and automated machine control. In proceedings of the IEEE Proceedings of the 2012 Winter Simulation Conference (WSC); 2012 Dec 1–12; Berlin, Germany. IEEE; 2012. [CrossRef]
  • [10] ElNimr A, Fagiar M, Mohamed Y. Two-way integration of 3D visualization and discrete event simulation for modeling mobile crane movement under dynamically changing site layout. Autom Constr 2016;68:235–248.
  • [11] Vahdatikhaki F, Hammad A. Risk-based look-ahead workspace generation for earthwork equipment using near real-time simulation. Autom Constr 2015;58:207–220. [CrossRef]
  • [12] Blackmore BS, Griepentrog HW. Autonomous Vehicles and Robots. In: Munac A, editor. CIGR handbook of agricultural engineering. Michigan, USA: ASABE; 2006. p. 204–215.
  • [13] Murad Ç, Yıldız E. Sera Üretim Mekanizasyonunda Robotik Uygulamalar: Literatür Çalışması. In: Marakoğlu T, editor. Proceedings of the 28. Ulusal Tarımsal Mekanizasyon Kongresi; 2013 Sept 4–6; Konya, Türkiye. Aybil Yayınları; 2013. p. 269–281.
  • [14] Kılıç A, Kapucu S. Modüler yeniden yapılandırılabilir robot modülü OMNIMO’nun tasarımı ve üretimi. J Fac Eng Archit Gazi Univ 2016;31:521–530. [CrossRef]
  • [15] Bettemir Ö, Tombaloglu B. Kürüme için küçük ölçekli otonom iş makinesi tasarımı ve üretimi. J Fac Eng Archit Gazi Univ 2013;28:617–625.
  • [16] Yıldırım A, Bettemir ÖH. Otonom dozer için küreme algoritması geliştirilmesi. Düzce Üniv Bil Teknol Derg 2018;6:292–308. [CrossRef]
  • [17] Bettemir ÖH. Otonom iş makinesinde çoklu CP DGPS kullanımı etkisinin benzetim ile tayini. In proceedings of the 2013 Otomatik Kontrol Ulusal Toplantısı; 2013 Sept 26–28; Malatya, Türkiye. 2013. p. 733–737.
  • [18] Bettemir ÖH. Development of mini scale autonomous robot grader for road constructions. In proceedings of the International Workshop on Unmanned Vehicles; 2010 Jun 10–12; İstanbul, Türkiye. 2010. p. 1–16.
  • [19] Fall A, Weber B, Pakpour M, Lenoir N, Shahidzadeh N, Fiscina J, et al. Sliding friction on wet and dry sand. Phys Rev Lett 2014;112;175502. [CrossRef]
  • [20] Klanfar M, Kujundžić T, Vrkljan D. Calculation analysis of bulldozer's productivity in gravitational transport on open pits. Teh Vjesn 2014;21:517–523.
  • [21] Patel BP, Prajapati JM, Gadhvi BJ. An excavation force calculations and applications: An analytical approach. Int J Eng Sci Technol 2011;3:3831–3837.
  • [22] McKyes E, Ali OS. The cutting of soil by narrow blades. J Terramech 1977;14:43–58. [CrossRef]
  • [23] Zeng X, Burnoski L, Agui J, Wilkinson A. Calculation of excavation force for ISRU on lunar surface. Available at: https://ntrs.nasa.gov/api/citations/20070018151/downloads/20070018151.pdf. Accessed on May 15, 2024.
  • [24] Xia K. A framework for earthmoving blade/soil model development. J Terramech 2008;45:147–165. [CrossRef]
  • [25] Yıldırım A, Bettemir ÖH. Visualisation of grading simulation. In Proceedings of the International Civil Engineering & Architecture Conference; 2019 Apr 17 – 20; Trabzon, Turkey. 2019.
  • [26] Nunnally SW. Construction Methods and Management. 6th edition. McGraw-Hill, USA: Prentice Hall; 2003.
  • [27] Holz D, Azimi A, Teichmann M, Mercier S. Real-time simulation of mining and earthmoving operations: a level set-based model for tool-induced terrain deformations. In Proceedings of the International Symposium on Automation and Robotics in Construction; 2013 Aug 11–15; Montreal, Canada. Curran Associates; 2013. p. 468–477. [CrossRef]
  • [28] Reece AR. The fundamental equation of earthmoving mechanics. In proceedings of 1964 Institution of Mechanical Engineers Conference; 1964 Jun 1.
  • [29] Kato, K. Wear in relation to friction - A review. Wear 2000;241:151–157. [CrossRef]
  • [30] Hoornaert T, Hua ZK, Zhang JH. Hard Wear-Resistant Coatings: A Review. In: Luo J, Meng Y, Shao T, Zhao Q, editors. Advanced Tribolgy. Heidelberg, Berlin: Springer; 2009. p. 774–779. [CrossRef]
  • [31] Duarte I, Ferreira JMF. Composite and nanocomposite metal foams. Materials (Basel) 2016;9:79. [CrossRef]
  • [32] Bolat Ç, Akgün İC, Gökşenli A. Effects of particle size, bimodality and heat treatment on mechanical properties of pumice reinforced aluminum syntactic foams produced by cold chamber die casting. China Foundry 2021;18:529–540. [CrossRef]
  • [33] Ergene B, Bolat Ç. Determination of thermal stress and elongation on different ceramic coated Ti-6Al-4V alloy at elevated temperatures by finite element method. Sigma J Eng Nat Sci 2020;38:2013–2026.
  • [34] Steffensen JF. Interpolation. 2nd ed. Mineola, NY: Courier Corporation; 2006.
  • [35] Shi WZ, Li QQ, Zhu CQ. Estimating the propagation error of DEM from higher‐order interpolation algorithms. Int J Remote Sens 2005;26:3069–3084. [CrossRef]
  • [36] Perissin D, Rocca F. High-accuracy urban DEM using permanent scatterers. IEEE Trans Geosci Remote Sens 2006;44:3338–3347. [CrossRef]
  • [37] Caterpillar, 1979. Fundamentals of Earthmoving. Texas, US: Caterpillar Tractor Company; 1963.
  • [38] Bettemir ÖH. Prediction of georeferencing precision of pushbroom scanner images. IEEE Trans Geosci Remote Sens 2011;50:831–838. [CrossRef]
There are 39 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Önder Halis Bettemir

Publication Date June 12, 2024
Submission Date July 24, 2022
Published in Issue Year 2024 Volume: 42 Issue: 3

Cite

Vancouver Bettemir ÖH. Cost and duration estimation of autonomous grading algorithm by simulation. SIGMA. 2024;42(3):831-44.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/