Research Article
BibTex RIS Cite

Synthesis of silica xeorogel@Mg-Al layered double hydroxide composite for CO2 capture

Year 2024, Volume: 42 Issue: 4, 1101 - 1107, 01.08.2024

Abstract

Today, the increase in the level of carbon dioxide (CO2) gas in the atmosphere has started to cause concern. Therefore, an appropriate and rapid decrease in CO2 gas emission levels has become a significant challenge. Capturing CO2 on a solid surface is proposed due to its ease of application, relatively low energy requirements, and applicability in various processes. This study investigated the preparation of Xerogel@MgAl LDH (X@MAL) composite for CO2 capture. Firstly, silica-based xerogel was synthesized by the acid and base-catalyzed two-step sol-gel method. Then, the X@MAL composite was prepared by the co-precipitation method. Based on the CO2 capture analysis, the maximum CO2 capture capacity of the composite at 25 °C, 75 °C, and 100 °C was 1.90 mmol.g-1, 0.70 mmol.g-1, and 0.40 mmol.g-1, respectively. The kinetic analysis results show that the CO2 capture of X@MAL can be well-defined by Avrami kinetic model.

References

  • REFERENCES
  • [1] Loganathan S, Tikmani M, Edubilli S, Mishra A, Ghoshal AK. CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature. Chem Eng J 2014;256:1–8. [CrossRef]
  • [2] Aquino AS, Vieira MO, Ferreira ASD, Cabrita EJ, Einloft S, de Souza MO. Hybrid ionic liquid-silica xerogels applied in CO2 capture. Appl Sci 2019;9:2614. [CrossRef]
  • [3] Witoon T, Tatan N, Rattanavichian P, Chareonpanich M. Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent. Ceram Int 2011;37:2297–2303. [CrossRef]
  • [4] Serafin J, Sreńscek-Nazzal J, Kamińska A, Paszkiewicz O, Michalkiewicz B. Management of surgical mask waste to activated carbons for CO2 capture. J CO2 Util 2022;59:101970. [CrossRef]
  • [5] Ismail IS, Rashidi NA, Yusup S. Production and characterization of bamboo-based activated carbon through single-step H3PO4 activation for CO2 capture. Environ Sci Pollut Res Int 2022;29:12434–12440. [CrossRef]
  • [6] Sari Yilmaz M. The CO2 adsorption performance of aminosilane-modified mesoporous silicas. J Therm Anal Calorim 2021;146:2241–2251. [CrossRef]
  • [7] Sari Yilmaz M, Karakas SB. Low-cost synthesis of organic–ınorganic hybrid MSU-3 from gold mine waste for CO2 adsorption. Water Air Soil Pollut 2018;229:326. [CrossRef]
  • [8] Choi HJ, Hong SB. Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine. Chem Eng J 2022;433:133800. [CrossRef]
  • [9] Lei L, Cheng Y, Chen C, Kosari M, Jiang Z, He C. Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. J Colloid Interface Sci 2022;612:132–145. [CrossRef]
  • [10] Bai F, Liu X, Sani S, Liu Y, Guo W, Sun C. Amine functionalized mesocellular silica foam as highly efficient sorbents for CO2 capture. Sep Purif Technol. 2022;299:121539. [CrossRef]
  • [11] Sari Yilmaz M. Synthesis of novel amine modified hollow mesoporous silica@Mg-Al layered double hydroxide composite and its application in CO2 adsorption. Microporous Mesoporous Mater 2017;245:109–117. [CrossRef]
  • [12] Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, Mokhtar M, Asiri AM, Basahel SN, et al. Graphene oxide as support for layered double hydroxides: Enhancing the CO2 adsorption capacity. Chem Mater 2012;24:4531–4539. [CrossRef] [13] Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2009;2:796–854. [CrossRef]
  • [14] Ding Y, Alpay E. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem Eng Sci 2000;55:3461–3474. [CrossRef]
  • [15] Van Selow ER, Cobden PD, Verbraeken PA, Hufton JR, Van Den Brink RW. Carbon capture by sorption-enhanced water-gas shift reaction process using hydrotalcite- based material. Ind Eng Chem Res 2009;48:4184–4193. [CrossRef]
  • [16] dos Santos-Gómez L, Cuesta N, Cameán I, García-Granda S, García AB, Arenillas A. A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochim Acta 2022;426:140790. [CrossRef]
  • [17] Du G, Seng KH, Guo Z, Liu J, Li W, Jia D, et al. Graphene-V2O5·nH2O xerogel composite cathodes for lithium ion batteries. RSC Adv 2011;1:690. [CrossRef]
  • [18] Guzel Kaya G, Deveci H. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review. J Ind Eng Chem 2020;89:13–27. [CrossRef]
  • [19] Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, et al. Sol-gel based materials for biomedical applications. Prog Mater Sci 2016;77:1–79. [CrossRef]
  • [20] Okada K, Kaneda A, Kameshima Y, Yasumori A. Acidic and basic gas adsorption properties in composites of layered double hydroxide/aluminosilicate xerogels. Mater Res Bull 2002;37:209–219. [CrossRef]
  • [21] Sezgin D, Sari Yilmaz M. Xerogel of fast kinetics and high adsorption capacity for cationic dye removal. Sigma J Eng Nat Sci 2024;42:189–197. [CrossRef]
  • [22] Hu W, Li M, Chen W, Zhang N, Li B, Wang M, et al. Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloids Surf A Physicochem Eng Asp 2016;501:83–91.
  • [23] Estella J, Echeverría JC, Laguna M, Garrido JJ. Effects of aging and drying conditions on the structural and textural properties of silica gels. Micropor Mesopor Mat 2007;102:274–282. [CrossRef]
  • [24] Sari Yilmaz M, Dere Özdemir Ö, Pişkin S. Synthesis and characterization of MCM-41 with different methods and adsorption of Sr2+ on MCM-41. Res Chem Intermed 2015;41:199–211. [CrossRef]
  • [25] Sari Yilmaz M, Piskin S. Evaluation of novel synthesis of ordered SBA-15 mesoporous silica from gold mine tailings slurry by experimental design. J Taiwan Inst Chem Eng 2015;46:176–182. [CrossRef]
  • [26] Mohammadian M, Kashi TSJ, Erfan M, Soorbaghi FP. Synthesis and characterization of silica aerogel as a promising drug carrier system. J Drug Deliv Sci Technol 2018;44:205–212. [CrossRef]
  • [27] Barahuie F, Hussein MZ, Arulselvan P, Fakurazi S, Zainal Z. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods. J Solid State Chem 2014;217:31–41. [CrossRef]
  • [28] dos Santos RMM, Gonçalves RGL, Constantino VRL, Santilli CV, Borges PD, Tronto J, et al. Adsorption of acid yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Appl Clay Sci 2017;140:132–139. [CrossRef]
  • [29] Auxilio AR, Andrews PC, Junk PC, Spiccia L. The adsorption behavior of C.I. Acid Blue 9 onto calcined Mg-Al layered double hydroxides. Dye Pigment 2009;81:103–112. [CrossRef]
  • [30] Jia Z, Li Z, Ni T, Li S. Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mol Liq 2017;229:285292. [CrossRef]
  • [31] Ho YS, McKay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 1998;76:822–827. [CrossRef]
  • [32] Serna-Guerrero R, Sayari A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem Eng J 2010;161:182– 190. [CrossRef]
  • [33] Songolzadeh M, Soleimani M, Takht Ravanchi M. Using modified Avrami kinetic and two component isotherm equation for modeling of CO2/N2 adsorption over a 13X zeolite bed. J Nat Gas Sci Eng 2015;27:831–841. [CrossRef]
  • [34] Kaya GG, Deveci H. CO2 capture using polyethyleneimine functionalized silica xerogels. Konya Müh Bil Derg 2021;9:1109–1118. [CrossRef]
  • [35] Santos LMD, Bernard FL, Pinto IS, Scholer H, Dias GG, Prado M, Einloft S. Polyurethane/ionic silica xerogel composites for CO2 capture. Mater Res 2019;22:e20190022. [CrossRef]
  • [36] Kou X, Guo H, Ayele EG, Li S, Zhao Y, Wang S, Ma X. Adsorption of CO2 on MgAl-CO3 LDHs-derived sorbents with 3D nanoflower-like structure. Energ Fuel 2018;32:5313– 5320. [CrossRef]
  • [37] Gunjakar JL, Kim IY, Hwang SJ. Efficient hybrid-type CO2 Adsorbents of reassembled layered double hydroxide 2D nanosheets with polyoxometalate 0D nanoclusters. Eur J Inorg Chem 2015;7:1198–1202. [CrossRef]
  • [38] Iruretagoyena D, Shaffer MS, Chadwick D. Layered double oxides supported on graphene oxide for CO2 adsorption: Effect of support and residual sodium. Ind Eng Chem Res 2015;54:6781–6792. [CrossRef]
There are 38 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Dicle Eren This is me 0000-0003-0216-3463

Müge Sarı Yılmaz 0000-0003-0441-7586

Publication Date August 1, 2024
Submission Date November 7, 2022
Published in Issue Year 2024 Volume: 42 Issue: 4

Cite

Vancouver Eren D, Sarı Yılmaz M. Synthesis of silica xeorogel@Mg-Al layered double hydroxide composite for CO2 capture. SIGMA. 2024;42(4):1101-7.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/