Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of photobioreactor height/diameter ratio on Chlorella variabilis microalgae growth and oil production efficiency

Yıl 2024, Cilt: 42 Sayı: 4, 1194 - 1201, 01.08.2024

Öz

This study aims to reveal how height/diameter ratio of column photobioreactors affect the growth and lipid content of microalgae. For this purpose, Chlorella variabilis cells were grown in aerated column photobioreactors with height/diameter ratio of 1, 2, and 3 in defined (BG11) culture medium. Results obtained showed that maximum microalgae biomass con-centration, cell productivity, cell doubling time, and lipid productivity were found to increase as the height/diameter of photobioreactor increased. After 15 days of cultivation, the highest cell productivity (0.139 gdw/L.day), cell lipid content (21.1%) and lipid productivity (29.33 mg/L.day) were obtained in the photobioreactor with the highest height/diameter ratio (3), whereas the highest specific growth rate (0.045 h-1) was obtained in the photobioreactor with the smallest height/diameter ratio (1). These findings contribute to the knowledge on pho-tobioreactor design and pave way for more efficient use of column type photobioreactors in producing microalgae.

Kaynakça

  • REFERENCES
  • [1] Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol 2010;28:371–380. [CrossRef]
  • [2] Göksan T. The Growth of spirulina platensis in different culture systems under greenhouse condition. Turkish J Biol 2007;31:47–52.
  • [3] Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101:87–96. [CrossRef]
  • [4] Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl Microbiol Biotechnol 2007;74:1163–1174.
  • [5] Ward OP, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem 2005;40:3627–3652. [CrossRef]
  • [6] Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25:294–306. [CrossRef]
  • [7] Gladue RM, Maxey JE. Microalgal feeds for aquaculture. J Appl Phycol 1994;6:131–141. [CrossRef]
  • [8] Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol 2003;21:210–216. [CrossRef]
  • [9] Olguín EJ. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnol Adv 2003;22:81–91. [CrossRef]
  • [10] Altın N. Chlorella varıabilis türü mikroalgin büyümesine ve yağ içeriğine etki eden parametrelerin belirlenmesi. (Master thesis). Kocaeli: Kocaeli University; 2017.
  • [11] Skjånes K, Lindblad P, Muller J. BioCO2 - A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 2007;24:405–413. [CrossRef]
  • [12] Peng L, Zhang Z, Cheng P, Wang Z, Lan CQ. Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 2016;206:255–263. [CrossRef]
  • [13] Bouabidi ZB, El-Naas MH, Zhang Z. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environ Chem Lett 2019;17:241–257. [CrossRef]
  • [14] Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 2010;14:217–232. [CrossRef]
  • [15] Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels-A process view. J Biotechnol 2009;142:64–69. [CrossRef]
  • [16] Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnergy Res 2008;1:20–43. [CrossRef]
  • [17] Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies 2012;5:1532–1553. [CrossRef]
  • [18] Bligh, E.G. and Dyer WJ. Canadian Journal of Biochemistry and Physiology. Can J Biochem Physiol 1959;37:911917. [CrossRef]
  • [19] Rajapitamahuni S, Bhayani K, Bachani P, Vamsi VB, Mishra S. An effective approach of bacterial siderophore as nitrogen source triggering the desired biochemical changes in microalgae Chlorella variabilis ATCC 12198. Algal Res 2019;43:101610. [CrossRef]
  • [20] Tran DT, Van Do TC, Nguyen QT, Le TG. Simultaneous removal of pollutants and high value biomaterials production by Chlorella variabilis TH03 from domestic wastewater. Clean Technol Environ Policy 2021;23:3–17. [CrossRef]
  • [21] Altın N, Kutluk T, Uyar B, Kapucu N. Effect of Different Nitrogen Sources on the Growth and Lipid Accumulation of Chlorella variabilis. J Appl Biol Sci 2018;12:38–40.
  • [22] Kutluk T, Kapucu N, Uyar B. Effect of light ıntensity on the growth of chlorella variabilis. Deu Muhendis Fak Fen Muhendis 2016;18:49. [CrossRef]
  • [23] Uyar B, Kutluk T, Özer Uyar GE, Kapucu N. Growth and lipid production of two microalgae strains in pilot scale (35 L) panel photobioreactors. J Adv Phys 2019;7:527–529. [CrossRef]
  • [24] Bhattacharya S, Maurya R, Mishra SK, Ghosh T, Patidar SK, Paliwal C, et al. Solar driven mass cultivation and the extraction of lipids from Chlorella variabilis: A case study. Algal Res 2016;14:137–142. [CrossRef]
  • [25] Gonzalez-Hita L, Tienza MB. (Determination of river-bed transport with iridium-192 in the upper reaches of the River Lerma). Isot Hydrol 1983 Proc Symp Vienna, (IAEA; STI/PUB/650) 1984:753–769.
  • [26] Pérez-López P, González-García S, Ulloa RG, Sineiro J, Feijoo G, Moreira MT. Life cycle assessment of the production of bioactive compounds from Tetraselmis suecica at pilot scale. J Clean Prod 2014;64:323–331. [CrossRef]
  • [27] Borowiak D, Krzywonos M. Bioenergy, biofuels, lipids and pigments—research trends in the use of microalgae grown in photobioreactors. Energies 2022;15:5357. [CrossRef]
  • [28] Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 2009;102:100–112. [CrossRef]
  • [29] Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 2009;43:6475–6481. [CrossRef]
Yıl 2024, Cilt: 42 Sayı: 4, 1194 - 1201, 01.08.2024

Öz

Kaynakça

  • REFERENCES
  • [1] Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol 2010;28:371–380. [CrossRef]
  • [2] Göksan T. The Growth of spirulina platensis in different culture systems under greenhouse condition. Turkish J Biol 2007;31:47–52.
  • [3] Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101:87–96. [CrossRef]
  • [4] Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Appl Microbiol Biotechnol 2007;74:1163–1174.
  • [5] Ward OP, Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem 2005;40:3627–3652. [CrossRef]
  • [6] Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25:294–306. [CrossRef]
  • [7] Gladue RM, Maxey JE. Microalgal feeds for aquaculture. J Appl Phycol 1994;6:131–141. [CrossRef]
  • [8] Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol 2003;21:210–216. [CrossRef]
  • [9] Olguín EJ. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnol Adv 2003;22:81–91. [CrossRef]
  • [10] Altın N. Chlorella varıabilis türü mikroalgin büyümesine ve yağ içeriğine etki eden parametrelerin belirlenmesi. (Master thesis). Kocaeli: Kocaeli University; 2017.
  • [11] Skjånes K, Lindblad P, Muller J. BioCO2 - A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 2007;24:405–413. [CrossRef]
  • [12] Peng L, Zhang Z, Cheng P, Wang Z, Lan CQ. Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 2016;206:255–263. [CrossRef]
  • [13] Bouabidi ZB, El-Naas MH, Zhang Z. Immobilization of microbial cells for the biotreatment of wastewater: A review. Environ Chem Lett 2019;17:241–257. [CrossRef]
  • [14] Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 2010;14:217–232. [CrossRef]
  • [15] Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels-A process view. J Biotechnol 2009;142:64–69. [CrossRef]
  • [16] Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnergy Res 2008;1:20–43. [CrossRef]
  • [17] Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies 2012;5:1532–1553. [CrossRef]
  • [18] Bligh, E.G. and Dyer WJ. Canadian Journal of Biochemistry and Physiology. Can J Biochem Physiol 1959;37:911917. [CrossRef]
  • [19] Rajapitamahuni S, Bhayani K, Bachani P, Vamsi VB, Mishra S. An effective approach of bacterial siderophore as nitrogen source triggering the desired biochemical changes in microalgae Chlorella variabilis ATCC 12198. Algal Res 2019;43:101610. [CrossRef]
  • [20] Tran DT, Van Do TC, Nguyen QT, Le TG. Simultaneous removal of pollutants and high value biomaterials production by Chlorella variabilis TH03 from domestic wastewater. Clean Technol Environ Policy 2021;23:3–17. [CrossRef]
  • [21] Altın N, Kutluk T, Uyar B, Kapucu N. Effect of Different Nitrogen Sources on the Growth and Lipid Accumulation of Chlorella variabilis. J Appl Biol Sci 2018;12:38–40.
  • [22] Kutluk T, Kapucu N, Uyar B. Effect of light ıntensity on the growth of chlorella variabilis. Deu Muhendis Fak Fen Muhendis 2016;18:49. [CrossRef]
  • [23] Uyar B, Kutluk T, Özer Uyar GE, Kapucu N. Growth and lipid production of two microalgae strains in pilot scale (35 L) panel photobioreactors. J Adv Phys 2019;7:527–529. [CrossRef]
  • [24] Bhattacharya S, Maurya R, Mishra SK, Ghosh T, Patidar SK, Paliwal C, et al. Solar driven mass cultivation and the extraction of lipids from Chlorella variabilis: A case study. Algal Res 2016;14:137–142. [CrossRef]
  • [25] Gonzalez-Hita L, Tienza MB. (Determination of river-bed transport with iridium-192 in the upper reaches of the River Lerma). Isot Hydrol 1983 Proc Symp Vienna, (IAEA; STI/PUB/650) 1984:753–769.
  • [26] Pérez-López P, González-García S, Ulloa RG, Sineiro J, Feijoo G, Moreira MT. Life cycle assessment of the production of bioactive compounds from Tetraselmis suecica at pilot scale. J Clean Prod 2014;64:323–331. [CrossRef]
  • [27] Borowiak D, Krzywonos M. Bioenergy, biofuels, lipids and pigments—research trends in the use of microalgae grown in photobioreactors. Energies 2022;15:5357. [CrossRef]
  • [28] Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 2009;102:100–112. [CrossRef]
  • [29] Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 2009;43:6475–6481. [CrossRef]
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Kimya
Bölüm Research Articles
Yazarlar

Necla Altin 0000-0001-7879-3854

Başar Uyar Bu kişi benim 0000-0002-6267-5631

Yayımlanma Tarihi 1 Ağustos 2024
Gönderilme Tarihi 30 Ocak 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 42 Sayı: 4

Kaynak Göster

Vancouver Altin N, Uyar B. The effect of photobioreactor height/diameter ratio on Chlorella variabilis microalgae growth and oil production efficiency. SIGMA. 2024;42(4):1194-201.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/