Review
BibTex RIS Cite

Unlocking biogas production potential: Evaluating the environmental impact and biodegradability of pharmaceutical and medical wastes

Year 2024, Volume: 42 Issue: 4, 1261 - 1291, 01.08.2024

Abstract

Addressing the pollution problems caused by improper disposal of effluents and wastes from pharmaceutical companies and medical facilities are important for the safety of humans and animals. This work highlights the challenges and developments in medical and pharmaceu-tical waste management practices across the world as well as their potential for bio-energy production. It involves the study of these waste properties, their impacts on the ecosystem and treatment or recycling methods. Various studies have shown that successes have been re-corded in converting some antibiotic contaminated wastewater to biogas in advance anaerobic digesters. Moreover, not all medical wastes are degradable, the use of placentas, hospital cotton waste, human urine, waste blood and surgery waste has been used in biogas plants built at close proximity to hospitals, in some cases. However, such plants are few and are only located in Tanzania, India and Philippines, among others to generate biogas to power hospitals, boil hot water needed by patients and for cooking. This is because the level of awareness as regards the dangers associated with indiscriminate disposal of medical and pharmaceutical waste is low and hence the development of waste disposal policy by countries is often overlooked. The implication of this is the spread of diseases in affected areas which can results in epidemics. It is therefore necessary to formulate policies that allow the harnessing of these wastes to biogas/bioenergy or the creation of better waste management practices that is environmentally safe.

References

  • REFERENCES
  • [1] Khobragade DS. Health care waste: Avoiding hazards to living and non living environment by efficient management. Fortune J Health Sci 2019;2:14–29. [CrossRef]
  • [2] Khaire KC, Maibam PD, Thakur A, Goyal A. Biomedical and pharmaceutical applications of xylan and its derivatives. In: Brienzo M, editor. Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy. Singapore: Springer; 2022. p. 447–465. [CrossRef]
  • [3] Odumosu BT. Biomedical waste: Its effects and safe disposal. In: Chandra R, editor. Environmental Waste Management. Florida: CRC Press; 2016. p. 81–93.
  • [4] Grabic R, Ivanová L, Kodešová R, Grabicová K, Vojs Staňová A, Imreová Z, et al. Desorption of pharmaceuticals and illicit drugs from different stabilized sludge types across pH. Water Res 2022;220:118651. [CrossRef]
  • [5] Farissi S, Ramesh S, Muthuchamy M, Muthukumar A. Biodegradation and photocatalysis of pharmaceuticals in wastewater. In: Shah MP, Rodriguez-Couto S, Kapoor RT, editors. Innovative Microbe-Based Applications for Removal of Chemicals and Metals in Wastewater Treatment Plants. Amsterdam, Netherlands: Elsevier; 2022. p. 69–97. [CrossRef]
  • [6] Golovko O, Ahrens L, Schelin J, Sörengård M, Bergstrand KJ, Asp H, et al. Organic micropollutants, heavy metals and pathogens in anaerobic digestate based on food waste. J Environ Manage 2022;313:114997. [CrossRef]
  • [7] Golovko O, Kaczmarek M, Asp H, Bergstrand KJ, Ahrens L, Hultberg M. Uptake of perfluoroalkyl substances, pharmaceuticals, and parabens by oyster mushrooms (Pleurotus ostreatus) and exposure risk in human consumption. Chemosphere 2022;291:132898. [CrossRef]
  • [8] Sharma N, Sharma S. A review on various treatment methods for treating pharmaceutical wastewater. Int Res J Eng Technol 2020;7:14061410.
  • [9] Ahmad S, Abbasi BK, Nazir MS, Abdullah MA. Metal organic frameworks (MOFs) as formidable candidate for pharmaceutical wastewater treatment. In: Lichtfouse E, Muthu SS, Khadir A, editors. Inorganic- Organic Composites for Water and Wastewater Treatment. Singapore: Springer; 2022. p. 37–63. [CrossRef]
  • [10] Gandhirajan M, Amarnath G, Kavitha P, Bhagavath R. Characterisation and treatment of pharmaceutical R&D wastewater. J Ind Pollut Control 2008;24:1–8.
  • [11] Mukesha P, Srinivasamurthyb S, Vigneshkumarb PS, Balamurugana P. A treatment of toxic substance in pharmaceutical industry wastewater: A review. Inform Technol Ind 2021;9:410–417. [CrossRef]
  • [12] Ismail ZZ, Habeeb AA. Pharmaceutical wastewater treatment associated with renewable energy generation in microbial fuel cell based on mobilized electroactive biofilm on zeolite bearer. J Eng 2015;21:35– 44. [CrossRef]
  • [13] Asplund K. Removal of pharmaceutical compounds by anaerobic digestion of sewage sludge. Dissertation. Florida: NOVA Univ; 2022.
  • [14] Moghaddam A, Khayatan D, Barzegar EF, Ranjbar R, Yazdanian M, Tahmasebi E, et al. Biodegradation of pharmaceutical compounds in industrial wastewater using biological treatment: A comprehensive overview. Int J Environ Sci Technol 2023;20:5659–5696. [CrossRef]
  • [15] Khodja M, Debih H, Lebtahi H, Amish MB. New HTHP fluid loss control agent for oil-based drilling fluid from pharmaceutical waste. Clean Eng Technol 2022;8:100476. [CrossRef]
  • [16] Chelliapan S, Sallis PJ. Application of anaerobic biotechnology for pharmaceutical wastewater treatment. Environ Manage Sustain Dev 2011;2:13–21.
  • [17] Zhong W, Li G, Gao Y, Li Z, Geng X, Li Y, et al. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment. Biotechnol Biotechnol Equip 2016;29:522–529. [CrossRef]
  • [18] Renita AA, Kumar PS, Srinivas S, Priyadharshini S, Karthika M. A review on analytical methods and treatment techniques of pharmaceutical wastewater. Desalin Water Treat 2017;87:160–178. [CrossRef]
  • [19] Zhao X, Chen H, Zheng Q, Liu J, Pan P, Xu G, et al. Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission. Energy 2023;265:126333. [CrossRef]
  • [20] Gunnerson CG, Stuckey DC. Anaerobic digestion: Principles and practices for biogas systems. 49th ed. World Bank; 1986.
  • [21] Haque MS, Haque MN. Studies on the effect of urine on biogas production. Bangladesh J Sci Ind Res.2006;41:23–32. [CrossRef]
  • [22] Chen L, Neibling H. Anaerobic digestion basics. Available at: http://large.stanford.edu/courses/2017/ph240/huang1/docs/cis-1215.pdf. Accessed on Jul 2, 2024.
  • [23] Ertekin E. Effect of oxytetracycline on biogas production and microbial communities during anaerobic digestion of cow manure by fluorescence in situ hybridization and real time polymerase chain reaction. Master’s Thesis. İstanbul: Boğaziçi Univ; 2011.
  • [24] Korbag I, Omer SMS, Boghazala H, Abusasiyah MAA. Recent advances of biogas production and future perspective. In: Abomohra AEF, Elsayed M, Qin Z, Ji H, Liu Z, editors. Biogas-Recent Advances and Integrated Approaches. IntechOpen; 2021. p. 1–41. [CrossRef]
  • [25] Luostarinen S, Normak A, Edström M. Overview of biogas technology. Available at: https://www.build-a-biogas-plant.com/PDF/baltic_manure_biogas_final_total.pdf. Accessed on Jul 2, 2024.
  • [26] Mingchai C, Sangmane P. Decision process for adoption of biogas technology for the sustainable development in Uttaradit Province, Thailand. World Appl Sci J 2012;19:699–703.
  • [27] Raja IA, Wazir S. Biogas production: The fundamental processes. Univers J Eng Sci 2017;5:29–37. [CrossRef]
  • [28] Godhole A, Wadetwar RN, Lawal TO, Mahady GB, Raut NA. Microbiology of waste treatment. In: Raut NA, Kokare D, Bhanvase BA, Randive KR, Dhoble SJ, editor. 360-Degree Waste Management: Fundamentals, Agricultural and Domestic Waste, and Remediation. 1st ed. Amsterdam, Netherlands: Elsevier; 2023. p. 185–211. [CrossRef]
  • [29] Huang R, Mei Z, Long Y, Xiong X, Wang J, Guo T, et al. Impact of optimized flow pattern on pollutant removal and biogas production rate using wastewater anaerobic fermentation. Bioresources 2015;10:4826–4842. [CrossRef]
  • [30] Xu L, Yang L, Guo S, Zhou J, Luo T, Ran Y, et al. Experimental and CFD simulation study on anaerobic digestion using dextran pharmaceutical wastewater based on cyclic fluidization hydraulic mixing. Environ Prog Sustain Energy 2021;40:13656. [CrossRef]
  • [31] Fakhri H, Arabaci DN, Ovez S, Aydin S. Eichhornia crassipes root biomass to reduce antibiotic resistance dissemination and enhance biogas production of anaerobic membrane bioreactor. Environ Technol 2022;43:41684179. [CrossRef]
  • [32] Kovacs ED, Kovacs MH. Gas chromatographic: Mass spectrometric mining the volatilomes associated to Rhizobiota exposed to commonly used pharmaceuticals. In: Mendes KF, de Sousa RN, Mielke KC, editors. Biodegradation Technology of Organic and Inorganic Pollutants. IntechOpen; 2022.
  • [33] Díaz AH. Degradation of pharmaceutical compounds by microalgae: Photobioreactor wastewater treatment, biomass harvesting and methanization. Available at: https://www.tdx.cat/handle/10803/390962#page=1. Accessed on Jul 2, 2024.
  • [34] Goswami RK, Agrawal K, Verma P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. Algal Res 2022;64:102703. [CrossRef]
  • [35] Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, et al. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022;62:9991029. [CrossRef]
  • [36] Chandel N, Ahuja V, Gurav R, Kumar V, Tyagi VK, Pugazhendhi A, et al. Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. Sci Total Environ 2022;825:153895. [CrossRef]
  • [37] Shashikant M, Bains A, Chawla P, Fogarasi M, Fogarasi S. The current status, bioactivity, food, and pharmaceutical approaches of Calocybe indica: A review. Antioxidants (Basel) 2022;11:1145. [CrossRef]
  • [38] Dalecka B. Wastewater treatment from pharmaceutical substances with filamentous fungi. Doctoral Thesis. Riga: Riga Technical Univ; 2021. [39] Global Methane Initiative (GMI). The agricultural biogas plants in Poland. Available at: https://www.globalmethane.org/documents/Poland-Ag-Biogas-Plants-April-2014.pdf. Accessed on Jul 3, 2024.
  • [40] Rahmatzafran A, Rossle D, Rianawati E, Loeksmanto IH, Hilbert J, Alemmu S, et al. Biogas markets and frameworks in Argentina, Ethiopia, Ghana, Indonesia, and South Africa. Available at: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5d1e4e65c&appId=PPGMS. Accessed on Jul 2, 2024.
  • [41] Peni D, Marcin D, Stolarski MJ. Helianthus salicifolius as a new biomass source for biogas production. Energies 2022;15:2921. [CrossRef]
  • [42] Hasan G, Roubík H, Mazancova J, Banout J. Biogas energy potential in Syria: Prospects and challenges. Prague: Czech University of Life Sciences; 2016.
  • [43] Ergür HS, Okumus F. Cost and potential analysis of biogas in Eskisehir. Uludag Univ J Fac Eng 2010;15:155–160.
  • [44] van der Ann L, Reichel A. Bio-waste in Europe—turning challenges into opportunities. Available at: https://cdn.revolutionise.com.au/cups/bioenergy/files/rviur0yxx2psmjoi.pdf. Accessed on Jul 2, 2024.
  • [45] Gustafsson N. Biogas production based on park waste-Does Helsingborg have the potential? Master’s theisis. Lund: Lund Univ; 2019.
  • [46] Gittelson P, Diamond D, Henning L, Payan M, Utesch L, Utesch N. et al. The false promises of biogas: Why biogas is an environmental justice issue. Environ Justice 2021;1–10. [CrossRef]
  • [47] Aydin S, Ince B, Cetecioglu Z, Ozbayram EG, Shahi A, Okay O, et al. Performance of anaerobic sequencing batch reactor in the treatment of pharmaceutical wastewater containing erythromycin and sulfamethoxazole mixture. Water Sci Technol 2014;70:16251632. [CrossRef]
  • [48] Rana RS, Singh P, Kandari V, Singh R, Dobhal R, Gupta S. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Appl Water Sci 2017;7:1–12.
  • [CrossRef]
  • [49] Zupanèiè GD, Gotvajn AG. Anaerobic treatment of pharmaceutical waste fermentation broth. Chem Biomol Eng 2009;23:485–492.
  • [50] Chelliapan S, Wilby T, Sallis PJ. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res 2006;40:507516. [CrossRef]
  • [51] Gupta SK, Gupta SK, Hung YT. Treatment of pharmaceutical wastes. 2nd ed. Florida: CRC Press; 2004. p. 63–129. [CrossRef]
  • [52] Shi X, Leong KY, Ng HY. Anaerobic treatment of pharmaceutical wastewater: A critical review. Bioresour Technol 2017;245:12381244. [CrossRef]
  • [53] Hosseini AM, Bakos V, Jobbagy A, Tardy G, Mizsey P, Mako M, et al. Co-treatment and utilisation of liquid pharmaceutical wastes. Period Polytech 2011;55:3–10. [CrossRef]
  • [54] Mostofi A. Select issues in designing license contracts of strategic alliances in the pharmaceutical supply chain. Dissertation. Wellington: Victoria Univ; 2022.
  • [55] Enright AM, McHugh S, Collins G, O'FLaherty V. Low-temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater. Water Res 2005;39:45874596. [CrossRef]
  • [56] Sundararaman S, Sathiyapriya A. Acclimatization of an industrial pharmaceutical wastewater in an aerobic batch mode of operation. Int J Environ Res Dev 2016;6:1–10.
  • [57] Nguluka NC, Ochekpe NA, Odumosu PO. An assessment of pharmaceutical waste management in some Nigerian pharmaceutical industries. Afr J Biotechnol 2011;10:11259–11264. [CrossRef]
  • [58] Muruganandam B, Saravanane R, Lavanya M, Sivacoumar R. Effect of inoculum-substrate ratio on acclimatization of pharmaceutical effluent in an anaerobic batch reactor. J Environ Sci Eng 2008;50:191196.
  • [59] Andersson S, Karlsson M. A comparative life cycle assessment of advanced processes for the removal of pharmaceutical residues in wastewater. Master’s thesis. Gothenburg: Chalmers Unive; 2022.
  • [60] Pharmapproach. List of pharmaceutical companies in Nigeria. Available from: https://www.pharmapproach.com/list-of-pharmaceutical-companies-nigeria/4/. Accessed Jul 3, 2022.
  • [61] Zhu W, Bu F, Xu J, Wang Y, Xie L. Influence of lincomycin on anaerobic digestion: Sludge type, biogas generation, methanogenic pathway and resistance mechanism. Bioresour Technol 2021;329:124913. [CrossRef]
  • [62] Horner R. Global value chains, import orientation, and the state: South Africa’s pharmaceutical industry. J Int Bus Policy 2022;5:68–87. [CrossRef]
  • [63] Njuguna AW, Mayabi AO, Ndirangu W. An investigation into the management of pharmaceutical wastewater in Kenya. In proceedings of the Sustainable Research and Innovation Conference; 2019 May 810; Kenya. 2019. p. 127–32.
  • [64] SaintyCo Pharma Process & Packaging. Top 200 pharmaceutical companies in South Africa. Available at: www.saintytec.com/pharmaceutical-companies-south-africa. Accessed on Jun 21, 2022.
  • [65] Justice. Pharmaceutical companies in Kenya (2022 list). Pharmchoices, Nairobi, Kenya; 2022. p. 1–18.
  • [66] Ogunbanwo OM, Kay P, Boxall AB, Wilkinson J, Sinclair CJ, Shabi RA, et al. High concentrations of pharmaceuticals in a nigerian river catchment. Environ Toxicol Chem 2022;41:551558. [CrossRef]
  • [67] World Health Organization (WHO). Africa within the global pharmaceutical market. Available at: https://blog.private-sector-and-development.com/app/uploads/2019/02/PRO-Revue28-UK-key- figures.pdf. Accessed on Jul 2, 2024.
  • [68] Ussai S, Chillotti C, Stochino E, Deidda A, Ambu G, Anania L, et al. Building the momentum for a stronger pharmaceutical system in Africa. Int J Environ Res Public Health 2022;19:3313. [CrossRef]
  • [69] Holt T, Lahrichi M, Santos da Silva J. Africa: A continent of opportunity for pharma and patients. Available at: https://www.mckinsey.com/industries/life-sciences/our-insights/africa-a-continent-of- opportunity-for-pharma-and-patients. Accessed Jul 2, 2024.
  • [70] Fountoulakis MS, Stamatelatou K, Lyberatos G. The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour Technol 2008;99:7083–7090. [CrossRef]
  • [71] Darwish M, Abuhabib AA, Mohammad H. Sustainable membranes with FNMs for pharmaceuticals and personal care products. In: Dutta S, Hussain CM, editor. Membranes with functionalized nanomaterials. 1st ed. Amsterdam, Netherlands: Elsevier; 2022. p. 275–328. [CrossRef]
  • [72] Fawzy ME, Abdelfattah I, Abuarab ME, Mostafa E, Aboelghait KM, El-Awady MH, et al. Sustainable approach for pharmaceutical wastewater treatment and reuse: Case study. J Environ Sci Technol 2018;11:209– 219. [CrossRef]
  • [73] Mahtab MS, Farooqi IH. An overview of occurrence and removal of pharmaceuticals from sewage/wastewater. In: Zhang T, editor. Sewage-Recent Advances, New Perspectives and Applications. IntechOpen; 2021.
  • [74] Mohan H, Rajput SS, Jadhav EB, Sankhla MS, Sonone SS, Jadhav S, et al. Ecotoxicity, occurrence, and removal of pharmaceuticals and illicit drugs from aquatic systems. Biointerface Res Appl Chem 2021;11:12530–12546. [CrossRef]
  • [75] Karungamye PN. Methods used for removal of pharmaceuticals from wastewater: A review. Appl J Environ Eng Sci 2020;6:412–428.
  • [76] Carey DE, McNamara PJ. Altered antibiotic tolerance in anaerobic digesters acclimated to triclosan or triclocarban. Chemosphere 2016;163:2226. [CrossRef]
  • [77] Bisognin RP, Wolff DB, Carissimi E, Prestes OD, Zanella R. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. Environ Technol 2021;42:22922303. [CrossRef]
  • [78] Frascaroli G, Reid D, Hunter C, Roberts J, Helwig K, Spencer J, et al. Pharmaceuticals in wastewater treatment plants: A systematic review on the substances of greatest concern responsible for the development of antimicrobial resistance. Appl Sci 2021;11:6670. [CrossRef]
  • [79] Luo X, Yang Q, Lin Y, Tang Z, Tomberlin JK, Liu W, et al. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. J Environ Manage 2022;307:114539. [CrossRef]
  • [80] Campbell AJ. The behaviour of pharmaceuticals in anaerobic digester sludge. Master’s thesis. Portsmouth: Univ of Portsmouth; 2013. [81] Lankila A. Removal of pharmaceutical compounds by adsorption. Master’s thesis. Lappeenranta: Lahti Univ; 2022.
  • [82] Zahedi S, Gros M, Balcazar JL, Petrovic M, Pijuan M. Assessing the occurrence of pharmaceuticals and antibiotic resistance genes during the anaerobic treatment of slaughterhouse wastewater at different temperatures. Sci Total Environ 2021;789:147910. [CrossRef]
  • [83] Song S, Jiang M, Yao J, Liu H, Dai X. Anaerobic digestion of spectinomycin mycelial residues pretreated by thermal hydrolysis: Removal of spectinomycin and enhancement of biogas production. Environ Sci Pollut Res Int 2020;27:3929739307. [CrossRef]
  • [84] Cucina M, Zadra C, Marcotullio MC, Di Maria F, Sordi S, Curini M, et al. Recovery of energy and plant nutrients from a pharmaceutical organic waste derived from a fermentative biomass: Integration of anaerobic digestion and composting. J Environment Chem Eng 2017;5:30513057. [CrossRef]
  • [85] Mitchell SM, Ullman JL, Teel AL, Watts RJ, Frear C. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour Technol 2013;149:244252. [CrossRef]
  • [86] Cetecioglu Z, Ince B, Gros M, Rodriguez-Mozaz S, Barceló D, Ince O, et al. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater. Sci Total Environ 2015;536:667674. [CrossRef]
  • [87] Golub N, Ying Z, Kozlovets O, Levtun I, Ranra S. Wastewater purification from antibiotics with simultaneous biogas production. J Microbiol Biotechnol Food Sci 2020;10:170–175. [CrossRef]
  • [88] Lallai A, Mura G, Onnis N. The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry. Bioresour Technol 2002;82:205208. [CrossRef]
  • [89] Gadipelly C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibanez R, Rathod VK, et al. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Ind Eng Chem Res 2014;53:11571–11592. [CrossRef]
  • [90] Amin MM, Hashemi H, Ebrahimi A, Ebrahimi A, Hashemi EH. Effects of oxytetracycline, tylosin, and amoxicillin antibiotics on specific methanogenic activity of anaerobic biomass. Int J Environ Health Eng 2012;1:1–37.
  • [91] Koniuszewska I, Harnisz M, Korzeniewska E, Czatzkowska M, Jastzebski JP, Paukszto L, et al. The effect of antibiotics on mesophilic anaerobic digestion process of cattle manure. Energies 2021;14:1125. [CrossRef]
  • [92] Alenzi A, Hunter C, Spencer J, Roberts J, Craft J, Pahl O, et al. Pharmaceuticals effect and removal, at environmentally relevant concentrations, from sewage sludge during anaerobic digestion. Bioresour Technol 2021;319:124102. [CrossRef]
  • [93] Visca A, Barra Caracciolo A, Grenni P, Patrolecco L, Rauseo J, Massini G, et al. Anaerobic digestion and removal of sulfamethoxazole, enrofloxacin, ciprofloxacin and their antibiotic resistance genes in a full-scale biogas plant. Antibiotics (Basel) 2021;10:502. [CrossRef]
  • [94] Amin MM, Zilles JL, Greiner J, Charbonneau S, Raskin L, Morgenroth E. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. Environ Sci Technol 2006;40:39713977. [CrossRef]
  • [95] Aydin S, Ince B, Ince O. Inhibitory effect of erythromycin, tetracycline and sulfamethoxazole antibiotics on anaerobic treatment of a pharmaceutical wastewater. Water Sci Technol 2015;71:1620–1628. [CrossRef]
  • [96] Zeng S, Sun J, Chen Z, Xu Q, Wei W, Wang D, et al. The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environ Res 2021;195:110792. [CrossRef]
  • [97] Lehmann L, Bloem E. Antibiotic residues in substrates and output materials from biogas plants - Implications for agriculture. Chemosphere 2021;278:130425.
  • [98] Adesina A, Sanni F. Pharmaceutical wastes management and the presence of pharmaceuticals in the environment of health facilities in Lagos state, Nigeria. Texila Int J Public Health 2018;6. [CrossRef]
  • [99] Sella CF, Carneiro RB, Sabatini CA, Sakamoto IK, Zaiat M. Can different inoculum sources influence the biodegradation of sulfamethoxazole antibiotic during anaerobic digestion? Braz J Chem Eng 2021;39:3546. [CrossRef]
  • [100] Mahlaule-Glory LM, Mathobela S, Hintsho-Mbita NC. Biosynthesized bimetallic (ZnO-SnO2) nanoparticles for photocatalytic degradation of organic dyes and pharmaceutical pollutants. In: Pagano R, Valli L, Syrgiannis Z, editors. Catalysts 2022;12:334. [CrossRef]
  • [101] Caracciolo AB, Visca A, Massini G, Patrolecco L, Miritana VM, Grenni P. Environmental fate of antibiotics and resistance genes in livestock waste and digestate from biogas plants. Available at: https://kosmospublishers.com/environmental-fate-of-antibiotics-and-resistance-genes-in-livestock-waste-and-digestate-from-biogas-plants-2/. Accessed on Jul 3, 2024.
  • [102] Guo J, Ostermann A, Siemens J, Dong R, Clemens J. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic digestion of pig manure at low organic loading rates. Waste Manag 2012;32:131136. [CrossRef]
  • [103] Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, et al. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 2020;103:10511071. [CrossRef]
  • [104] Yahia MB. An advanced physical modeling of adsorption mechanism of pharmaceutical compound on a biochar. AIP Adv 2022;12:035003. [CrossRef]
  • [105] Pavithra KG, Kumar PS, Rajan PS, Saravanan A, Naushad M. Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review. Korean J Chem Eng 2017;34:2787– 2805. [CrossRef]
  • [106] Bauer A, Amon T, Winckler C, Gans O, Scharf S. Effects of antibiotic residues in manure on biogas yield. Available at: https://boku.ac.at/fileadmin/data/H05000/H13000/Kooperation_BOKU- U/Poster_StratKoopBOKUU_antibiotics_2013_Bauer.pdf. Accessed on Jul 3, 2024.
  • [107] Chen Z, Wang H, Chen Z, Ren N, Wang A, Shi Y, et al. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin. J Hazard Mater 2011;185:905913. [CrossRef]
  • [108] Saravanane R, Murthy DV, Krishnaiah K. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system. Bioresour Technol 2001;76:279281. [CrossRef]
  • [109] Sun H. Antibiotic resistance in biogas processes. Doctoral thesis. Uppsala: Swedish Univ; 2021.
  • [110] Nuengjamnong C, Rachdawong P, Chalermchaikit T. Effect of amoxicillin on biogas production and the Eschericia coli population in biogas systems treating swine wastewater. Thai J Vet Med 2010;40:57– 62. [CrossRef]
  • [111] Li W, Qigui N, Hong Z, Zhe T, Yu Z, Yingxin G, et al. UASB treatment of chemical synthesis-based pharmaceutical wastewater containing rich organic sulfur compounds and sulfate and associated microbial characteristics. Chem Eng J 2015;260:55–63. [CrossRef]
  • [112] Gupta S, Chandra TS, Sharma A, Lokhande SK. Ozone-induced biodegradability enhancement and color reduction of a complex pharmaceutical effluent. J Int Ozone Assoc 2015;37:1–8. [CrossRef]
  • [113] Kayalvizhi N, Asha B. Role of volatile fatty acids in acidogenic and methanogenic reactor for treating pharmaceutical wastewater. Asian J Microbiol Biotechnol Environ Sci 2020;22:479–485.
  • [114] Kelbert M. Antineoplastic drugs: Effect of doxorubicin on enriched archaea culture from anaerobic digestion and potential degradation via an enzymatic process. Doctoral thesis. Florianópolis: Univ Federal de Santa Catarina; 2022.
  • [115] Ng KK, Shi X, Tang MKY, Ng HY. A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Sep Purif Technol 2014;132:634–643. [CrossRef]
  • [116] Pugazhendi A, Jamal MT, Al-Mur BA, Jeyakumar RB. Bioaugmentation of electrogenic halophiles in the treatment of pharmaceutical industrial wastewater and energy production in microbial fuel cell under saline condition. Chemosphere 2022;288:132515. [CrossRef]
  • [117] VEOLIA. Pharmaceutical manufacturing - Wastewater treatment guide. Available at: https://www.veoliawatertech.com/sites/g/files/dvc3601/files/document/2020/06/Veolia_Pharma_Guide_Wastewater_2020_HR_With_Links_0.pdf. Accessed Jul 3, 2024.
  • [118] Chittala G, Mogadati PS. Performance studies on a pharmaceutical wastewater treatment plant with a special reference to total dissolved solids removal. Int J Life Sci Biotechnol Pharma Res 2012;1:103– 112.
  • [119] Hrenovic J, Stilinovic B, Dvoracek L. Use of prokaryotic and eukaryotic biotests to assess toxicity of wastewater from pharmaceutical sources. Acta Chim Slov 2005;52:119–125.
  • [120] Menacherry SPM, Aravind UK, Aravindakumar CT. Oxidative degradation of pharmaceutical waste, theophylline, from natural environment. Atmosphere (Basel) 2022;13:835. [CrossRef]
  • [121] Chen YF, Ng WJ, Yap MGS. Performance of upflow anaerobic biofilter process in pharmaceutical wastewater treatment. Resour Conserv Recycl 1994;11:83–91. [CrossRef]
  • [122] Gulmez B, Ozturk I, Alp K, Arikan OA. Common anaerobic treatability of pharmaceutical and yeast industry wastewater. Water Sci Technol 1998;38:37–44. [CrossRef]
  • [123] Vijayan DS, Mohan A, Nivetha C, Sivakumar V, Devarajan P, Paulmakesh A, et al. Treatment of pharma effluent using anaerobic packed bed reactor. J Environ Public Health 2022;2022:4657628. [CrossRef]
  • [124] Ribeiro MHG, de A. Silva MC, Benetti AD. Anaerobic membrane bioreactor to remove pesticides and pharmaceuticals from wastewater: A bibliometric review. ICONASET-2023: Complexity and İmpact of Emerging Contaminants On Environment and Human Health, 2024. [CrossRef]
  • [125] Kumar V, Bansal V, Madhavan A, Kumar M, Sindhu R, Awasthi MK, et al. Active pharmaceutical ingredient (API) chemicals: A critical review of current biotechnological approaches. Bioengineered 2022;13:43094327. [CrossRef]
  • [126] Malmborg J, Magnér J. Pharmaceutical residues in sewage sludge: Effect of sanitization and anaerobic digestion. J Environ Manage 2015;153:110. [CrossRef]
  • [127] Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends Environ Anal Chem 2021;30:e00125. [CrossRef]
  • [128] Sreekanth D, Sivaramakrishna D, Himabindu V, Anjaneyulu Y. Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour Technol 2009;100:25342549. [CrossRef]
  • [129] Zhan H, Liang X, Wei Y, Zhuang X, Peng H, Zeng Z, et al. Utilization and valorization of pharmaceutical process residues: Current status and future trends. J Clean Prod 2024;438:140751. [CrossRef]
  • [130] Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem Rev 2019;119:35103673. [CrossRef]
  • [131] Fountoulakis M, Drillia P, Stamatelatou K, Lyberatos G. Toxic effect of pharmaceuticals on methanogenesis. Water Sci Technol 2018;50:335–340. [CrossRef] [132] Robertson KJ, Brar R, Randhawa P, Stark C, Baroutian S. Opportunities and challenges in waste management within the medicinal cannabis sector. Ind Crops Prod 2023;197:116639. [CrossRef]
  • [133] Wohde M, Berkner S, Junker T, Konradi S, Schwarz L, Düring RA. Occurrence and transformation of veterinary pharmaceuticals and biocides in manure: A literature review. Environ Sci Eur 2016;28:23. [CrossRef]
  • [134] Arcanjo GS, Dos Santos CR, Cavalcante BF, Moura GA, Ricci BC, Mounteer AH, et al. Improving biological removal of pharmaceutical active compounds and estrogenic activity in a mesophilic anaerobic osmotic membrane bioreactor treating municipal sewage. Chemosphere 2022;301:134716. [CrossRef]
  • [135] Reddy BV, Sandeep P, Ujwala P, Navaneetha K, Reddy KVR. Water treatment process in pharma industry: A review. Int J Pharm Biol Sci 2014;4:7–19.
  • [136] Lie M, Rubiyatno, Binhudayb FS, Thao NTT, Kristanti RA. Assessing the impact of pharmaceutical contamination in Malaysian groundwater: Risks, modelling, and remediation strategies. Trop Aquat Soil Pollut 2024;4:43–59, 2024. [CrossRef]
  • [137] Singh S, Pant A, Dutta K, Rani T, Vithanage M, Daverey A. Phytoremediation of pharmaceuticals and personal care products using the constructed wetland. Environ Chem Ecotoxicol 2024;6:104–116. [CrossRef]
  • [138] Abdelmigeed MO, Sadek AH, Ahmed TS. Novel easily separable core–shell Fe3O4/PVP/ZIF-8 nanostructure adsorbent: Optimization of phosphorus removal from fosfomycin pharmaceutical wastewater. RCS Adv 2022;12:12823–12842. [CrossRef]
  • [139] Javid F, Ang TN, Hanning S, Svirskis D, Burrell R, Taylor M, et al. Subcritical hydrothermal deconstruction of two hormones (adrenaline and progesterone) in pharmaceutical waste. J Supercrit Fluids 2022;179:105388. [CrossRef]
  • [140] Michael I, Ogbonna B, Sunday N, Anetoh M, Matthew O. Assessment of disposal practices of expired and unused medications among community pharmacies in Anambra state southeast Nigeria: A mixed study design. J Pharm Policy Pract 2019;12:12. [CrossRef]
  • [141] Azizan NAZ, Yuzir A, Abdullah N. Pharmaceutical compounds in anaerobic digestion: A review on the removals and effect to the process performance. J Environ Chem Eng 2021;9:105926. [CrossRef]
  • [142] Hao F. Research progress in pharmaceutical wastewater treatment technology. E3S Web Conf 2019;118:04019. [CrossRef]
  • [143] Cha YS, Yoon SU, Kim CG. Studies on influence and fate of carbamazepine in anaerobic digestion of sludge. J Environ Biol 2016;37:3742.
  • [144] Vaughan M. uPOPs prevention and chemical awareness: Elements of a general awareness campaign. Available at: https://www.sprep.org/attachments/Reports/GEFPAS_Pollutant_Awareness_Camapign.pdf. Accessed on Jul 3, 2024.
  • [145] Šefčovičová K, Veronika K, Juraj M, Maros S, Igor B, Andrey K. Influence of selected pharmaceuticals on biogas production in mesophilic anaerobic fermentation. Res Pap 2021;29:149–157. [CrossRef]
  • [146] Klatte S, Schaefer HC, Hempel M. Pharmaceuticals in the environment–A short review on options to minimize the exposure of humans, animals and ecosystems. Sustain Chem Pharm 2016;5:61–66. [CrossRef]
  • [147] Colella K. Time trends of pharmaceuticals in wastewater treatment plant effluent with sources from pharmaceutical manufacturing facilities and hospitals. Master’s thesis. New York: Stony Brook Univ; 2014.
  • [148] Danbauchi ES. Evaluation of lower Usuma Dam water quality for domestic supply (FCT) Abuja, Nigeria. Int J Res Sci Innov. 2020;7:219–224.
  • [149] Ilechukwu I. We found traces of drugs in a dam that supplies Nigeria’s capital city. Available at: https://theconversation.com/we-found-traces-of-drugs-in-a-dam-that-supplies-nigerias-capital-city-161927. Accessed on Jul 3, 2024.
  • [150] Adegbe EA, . Pharmaceutical compounds in wastewater discharged from a University Teaching Hospital liquid waste treatment plant. Niger Res J Chem Sci 2019;7:256–261.
  • [151] Naveenkumar M, Anantharaj C, Porkodi N, Senthilkumar K, Nandakumar NP. A review on pharmaceutical wastewater treatment using biological process-benefits and opportunities. in Development in Wastewater Treatment Research and Processes-Emerging Technologies for Removal of Pharmaceuticals and Personal Care Products: State of the Art, Challenges and Future Perspectives, 2024, pp. 99–114. [CrossRef]
  • [152] Ameri B, Salah H. Analogous study of biogas production by anaerobic digestion of sewage treatment plant sludge , proposal of universal dimensionless models. Energy Sci Eng 2022;11;23662384. [CrossRef]
  • [153] Thomas A, et al. Treatment of pharmaceutical waste water treatment. Int J Eng Res Technol 2021;10:733–736.
  • [154] Mehmood T, Nadeem F, Bilal M, Meer B, Meer, K Qamar SA. Biological treatment of pharmaceutical wastes. In: Singh P, Verma P, Singh R, Ahamad A, Batalhao ACS, editors. Waste Management and Resource Recycling in the Developing World. 1st ed. Amsterdam, Netherlands: Elsevier. 2023. pp. 577–600. [CrossRef]
  • [155] Kamali M, Aminabhavi TM, Costa MEV, Islam SU, Appels L, Dewil R. Pharmaceutically active compounds in anaerobic digestion processes-Biodegradation and fate. In: Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds. Cham: Springer; 2023. pp. 91–106. [CrossRef]
  • [156] Iliopoulou A, Arvaniti OS, Deligiannis M, Gatidou G, Vyrides I, Fountoulakis MS, et al. Combined use of strictly anaerobic MBBR and aerobic MBR for municipal wastewater treatment and removal of pharmaceuticals. J Environ Manage 2023;343:118211. [CrossRef]
  • [157] Inanc B, Calli B, Alp K, Ciner F, Mertoglu B, Ozturk I. Toxicity assessment on combined biological treatment of pharmaceutical industry effluents. Water Sci Technol 2002;45:135142. [CrossRef]
  • [158] Buitrón G, Melgoza RM, Jiménez L. Pharmaceutical wastewater treatment using an anaerobic/aerobic sequencing batch biofilter. J Environ Sci Health A Tox Hazard Subst Environ Eng 2003;38:20772088. [CrossRef]
  • [159] Huang B, Wang H, Cui D, Zhang B, Chen Z-B, Wang A-J. Treatment of pharmaceutical wastewater containing β-lactams antibiotics by a pilot-scale anaerobic membrane bioreactor (AnMBR). Chem Eng J 2018;341:238–247. [CrossRef]
  • [160] An Z, Junjie Z, Min Z, Yan Z, Xiaomei S, Hongjun L, et al. Anaerobic membrane bioreactor for the treatment of high-strength waste/wastewater: A critical review and update. Chem Eng J 2023;470:144322.
  • [CrossRef]
  • [161] Schlott DA, Charbonneau SG, Greiner JA, Green RE, Quane DE, Robertson WM. Design, construction & start-up of an anaerobic treatment system for pharmaceutical wastewater. In proceedings of the 43rd Industrial Waste Conference; 1998 May 1012; Indiana, USA. 1989.
  • [162] Murugesan MP, Akilamudhan P, Sureshkumar A, Arunkarhikeya G. Treatment of hospital and biomedical waste effluent using HUASB reactor Int J Innov Sci Res 2014;11:379–386.
  • [163] Li Y, Li C, Wang Z, Liu Y, Jia Y, Li F, et al. Navigating the complexity of pharmaceutical wastewater treatment by ‘effective strategy, emerging technology, and sustainable solution. J Water Process Eng 2024;63:105404. [CrossRef]
  • [164] Yin F, Wang D, Li Z, Ohlsen T, Hartwig P, Czekalla S. Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge. Bioresour Technol 2015;177:188193. [CrossRef]
  • [165] Liu H, Xu G, Li G. Autocatalytic sludge pyrolysis by biochar derived from pharmaceutical sludge for biogas upgrading. Energy 2021;229:120802. [CrossRef]
  • [166] Ouyang J, Zhou L, Liu Z, Heng JYY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical micropollutants from wastewater: A review. Sep Purif Technol 2020;253:117536. [CrossRef]
  • [167] Saravanane R, Murthy DVS, Krishnaiah K. Assessment of toxicity and anaerobic degradation of anti-osmotic drug based pharmaceutical effluent in an upflow anaerobic fluidized bed system. Glob Nest Int J 2000;2:149–158. [CrossRef]
  • [168] Mantovani M, Rossi S, Ficara E, Collina E, Marazzi F, Lasagni M, et al. Removal of pharmaceutical compounds from the liquid phase of anaerobic sludge in a pilot-scale high-rate algae-bacteria pond. Sci Total Environ 2024;908:167881. [CrossRef]
  • [169] Kasulla S, Malik SJ. Unlocking the true energy potential of waste water treatment plants. Available at: https://www.brenstech.com/2023/10/03/unlocking-the-true-energy-potentials-of-waste-water- treatment-plants/. Accessed on Jul 3, 2024.
  • [170] Freitas RXA, Borges LA, de Souza HF, Colen F, Cangussu ASR, Sobrinho EM, et al. Characterization of the primary sludge from pharmaceutical industry effluents and final disposition. Processes 2019;7:231. [CrossRef]
  • [171] Ali Q, Zainab R, Badshah M, Sarwar W, Khan S, Mustafa G, et al. Prospecting the biodegradation of ciprofloxacin by Stutzerimonas stutzeri R2 and Exiguobacterium indicum strain R4 isolated from pharmaceutical wastewater. H2Open J 2024;7:149–162. [CrossRef]
  • [172] Pandis PK, Kalogirou C, Kanellou E, Vaitsis C, Savvidou MG, Sourkouni G, et al. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. Chemengineering 2022;6:8. [CrossRef]
  • [173] Carballa M, Manterola G, Larrea L, Ternes T, Omil F, Lema JM. Influence of ozone pre-treatment on sludge anaerobic digestion: Removal of pharmaceutical and personal care products. Chemosphere 2007;67:14441452. [CrossRef]
  • [174] Wen S, Chen L, Li W, Ren H, Li K, Wu B, et al. Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation. Sci Rep 2018;8:9581. [CrossRef] [175] Sörensen M, Zegenhagen F, Weckenmann J. State of the art wastewater treatment in pharmaceutical and chemical industry by advanced oxidation. Pharmind Prax 2015;77:594–607.
  • [176] Remya RR, Julius A, Suman TY, Mohanavel V, Karthick A, Pazhanimuthu C, et al. Role of nanoparticles in biodegradation and their importance in environmental and biomedical applications. J Nanomater 2022;2022:6090846. [CrossRef]
  • [177] Zhang J, Peng Y, Li X, Du R. Feasibility of partial-denitrification/ anammox for pharmaceutical wastewater treatment in a hybrid biofilm reactor. Water Res 2022;208:117856. [CrossRef]
  • [178] Maleki Shahraki Z, Mao X. Biochar application in biofiltration systems to remove nutrients, pathogens, and pharmaceutical and personal care products from wastewater. J Environ Qual 2022;51:129151. [CrossRef]
  • [179] Ganesan S, Shanmugam S, Alagarasan JK, Lingassamy AP, Savunthari KV, Lo HM, et al. Novel African tulip fruit waste-derived biochar nanostructural materials for the removal of widespread pharmaceutical contaminant in wastewaters. Biomass Convers Bior 2023;13:1351313525. [CrossRef]
  • [180] Ihsanullah I, Khan MT, Zubair M, Bilal M, Sajid M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. Chemosphere 2022;289:133196. [CrossRef]
  • [181] Sheng X, Wang J, Cui Q, Zhang W, Zhu X. A feasible biochar derived from biogas residue and its application in the efficient adsorption of tetracycline from an aqueous solution. Environ Res 2022;207:112175. [CrossRef]
  • [182] Al-Samrraie LA, Alrawashdeh KAB, Al-Issa HA, Shakhatreh S, Hussien AA, Qasem I. Improve heavy metals and pollutants removal from the pharmaceuticals wastewater using Washingtonia robusta: New extraction process. Civ Environ Eng 2022;18:340349. [CrossRef]
  • [183] Madikizela LM, Pakade VE. Trends in removal of pharmaceuticals in contaminated water using waste coffee and tea-based materials with their derivatives. Water Environ Res 2023;95:e10857. [CrossRef]
  • [184] Al-Mashaqbeh O, Alsalhi L, Salaymeh L, Dotro G, Lyu T. Treatment of pharmaceutical industry wastewater for water reuse in Jordan using hybrid constructed wetlands. Sci Total Environ 2024;939:173634. [CrossRef]
  • [185] Gnanavel G, Muthusamy P. Pharmaceutical industry wastewater treatment using atmospheric air and pure oxygen. Int Acad Sci Eng Technol 2018;7:1–6.
  • [186] Mohan SV, Prakasham RS, Satyavathi B, Annapurna J, Ramakrishna SV. Biotreatability studies of pharmaceutical wastewater using an anaerobic suspended film contact reactor. Water Sci Technol 2001;43:271276. [CrossRef]
  • [187] Chen Z, Wang Y, Li K, Zhou H. Effects of increasing organic loading rate on performance and microbial community shift of an up-flow anaerobic sludge blanket reactor treating diluted pharmaceutical wastewater. J Biosci Bioeng 2024;118:284–288. [CrossRef]
  • [188] Chen Z, Xu J, Hu D, Cui Y, Wu P, Hui Ge, et al. Performance and kinetic model of degradation on treating pharmaceutical solvent wastewater at psychrophilic condition by a pilot-scale anaerobic membrane bioreactor. Bioresour Technol 2018;269:319328. [CrossRef]
  • [189] Ng KK, Shi X, Ng HY. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater. Water Res 2015;81:311324. [CrossRef]
  • [190] Dutta K, Lee MY, Lai WW, Lee CH, Lin AY, Lin CF, et al. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresour Technol 2014;165:4249. [CrossRef]
  • [191] Mullai P, Solaiappan V, Sabarathinam PL. Biogas production kinetics in an anaerobic multiphase hybrid reactor treating antibiotic industry wastewater. Desalin Water Treat 2018;122:247253. [CrossRef]
  • [192] Nandy T, Kaul SN, Szpyrkowicz L. Treatment of herbal pharmaceutical wastewater with energy recovery. Int J Environ Stud 1998;54:83–105. [CrossRef]
  • [193] Svojitka J, Dvorak L, Studer M, Straub JO, Frömelt H, Wintgens T. Performance of an anaerobic membrane bioreactor for pharmaceutical waste-water treatment. Bioresour Technol 2017;229:180189. [CrossRef]
  • [194] Wang KM, Zhou LX, Ji KF, Xu SN, Wang JD. Evaluation of a modified internal circulation (MIC) anaerobic reactor for real antibiotic pharmaceutical wastewater treatment: Process performance, microbial community and antibiotic resistance genes evolutions. J Water Process Eng 2022;48:102914. [CrossRef]
  • [195] Kumar P, Meena M, Kavar AB, Nama P, Pathak A, Varma R, et al. Experimental study to optimise the treatment efficacy of pharmaceutical effluents by combining electron beam irradiation with conventional techniques. Available at: https://arxiv.org/abs/2109.02479. Accessed on Jul 3, 2024.
  • [196] Kumar P, Mandal MK, Pal S, Chaudhuri H, Dubey KK. Membrane bioreactor for the treatment of emerging pharmaceutical compounds in a circular bioeconomy. In: Varjani S, Pandey A, Bhaskar T, Mohan SV, Tsang DCW, editors. Biomass, Biofuels, Biochemicals, Circular Bioeconomy: Technologies for Waste Remediation. Amsterdam, Netherlands: Elsevier; 2022. pp. 203–221. [CrossRef]
  • [197] Hu D, Min H, Chen Z, Zhao Y, Cui Y, Zou X, et al. Performance improvement and model of a bio-electrochemical system built-in up-flow anaerobic sludge blanket for treating β-lactams pharmaceutical wastewater under different hydraulic retention time. Water Res 2019;164:114915. [CrossRef]
  • [198] Nandy T, Kaul SN. Anaerobic pre-treatment of herbal-based pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery. Water Res 2001;35:351362. [CrossRef]
  • [199] Fazal S, Zhang B, Zhong Z, Gao L, Lu X. Membrane separation technology on pharmaceutical wastewater by using MBR (Membrane Bioreactor). J Environ Prot 2015;6:299–307. [CrossRef]
  • [200] Xiao Y, Hazarki Y, de Araujo C, Chun Chau S, Stuckey DC. Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC). Chem Eng J 2017;321:335345. [CrossRef]
  • [201] Mestre AS, Viegas RMC, Mesquita E, Rosa MJ, Carvalho AP. Engineered pine nut shell derived activated carbons for improved removal of recalcitrant pharmaceuticals in urban wastewater treatment. J Hazard Mater 2022;437:129319. [CrossRef]
  • [202] Baaloudj O, Badawi AK, Hamza K, Yasmine B, Raouf H, Noureddine N, et al. Techno-economic studies for a pilot-scale Bi12TiO20 based photocatalytic system for pharmaceutical wastewater treatment: From laboratory studies to commercial-scale applications. J Water Process Eng 2022;48:102847. [CrossRef]
  • [203] Łubek-Nguyen A, Ziemichod W, Olech M. Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. Appl Sci 2022;12:3232. [CrossRef]
  • [204] Taylor P, Saravanane R, Murthy DVS, Krishnaiah K. Bioaugmentation and anaerobic treatment of pharmaceutical effluent in fluidized bed reactor. J Environ Sci Heal Part A Toxic/Hazardous Subst Environ Eng 2021;36:779–791. [CrossRef]
  • [205] Abu Mhady AI, Awad MA, Al-Aghah MR, El-Nahhal YZ. Assessment of medical waste Dehghani MH, Azam K, Changani F, Dehghani Fard E. Assessment of medical waste management in educational hospitals of Tehran university medical sciences. Iran J Environ Heal Sci Eng 2008;5:131–136.
  • [206] Dehghani MH, Azam K, Changani F, Fard ED. Assessment of medical waste management in educational hospitals of Tehran university medical sciences. Iran J Environ Heal Sci Eng 2008;5:131–136.
  • [207] Mohammed AMA, Kabbashi FMA, Hamad HK. Production of biogas from biomedical waste (blood). Master’s thesis. Khartom: Sudan Univ; 2017.
  • [208] Health Care Without Harm. Non-incineration medical waste treatment technologies in Europe. Available at: https://www.env-health.org/IMG/pdf/altech_Europe_updated_version_10_12_2004.pdf. Accessed on Jul 3, 2024.
  • [209] Kabbashi FM, Hassan E. Methane production from biomedical waste (blood). Int J Energy Environ Eng 2018;12:642–649.
  • [210] Kularatne RKA. Biomedical waste generation at Ayurveda hospitals in South Asia: A mini review of the composition, quantities and characteristics. Waste Manag Res 2024;42:95110. [CrossRef]
  • [211] Rana A, Sharma N, Hasan I. A review on hospital waste as a potential environmental pollution and their remediation mechanisms. AIP Conf Proc 2023;2535:020014. [CrossRef]
  • [212] Babu BR, Parende AK, Rajalakshmi R, Suriyakala P, Volga M. Management of biomedical waste in India and other countries: A review. J Int Environ Appl Sci 2009;4:65–78.
  • [213] Burik A. Microbes come to the rescue to reduce hospital waste. Available at: https://www.labiotech.eu/trends-news/pharmafilter-microbes-reduce-hospital-waste/. Accessed on Jul 3, 2024.
  • [214] Ejaeta O. National healthcare waste management plan. Federal Ministry of Health, Nigeria; 2008.
  • [215] Anitha J, Jayraaj IA. Isolation and identification of bacteria from biomedical waste (BMW). Int J Pharm Pharm Sci 2012;4:286–388.
  • [216] Longe EO, Williams A. A preliminary study of medical waste management in Lagos metropolis, Nigeria. Iran J Environ Heal Sci Eng 2006;3:133–139.
  • [217] Hou Y, Linlin J, Wenting M, Jian Li H. Analysing the factors affecting medical waste generation in China. Sustain Chem Pharm 2023;32:100975. [CrossRef]
  • [218] Wei Y, Cui M, Ye Z, Guo Q. Environmental challenges from the increasing medical waste since SARS outbreak. J Clean Prod 2021;291:125246. [CrossRef]
  • [219] Gao Q, Shi Y, Mo D, Nie J, Yang M, Rozelle S, et al. Medical waste management in three areas of rural China. PLoS One 2018;13:e0200889. [CrossRef]
  • [220] Zhimin M. Waste mismanagement: China’s struggle with medical trash. Available at: https://www.wilsoncenter.org/publication/waste-mismanagement-chinas-struggle-medical-trash. Accessed on Jul 3, 2024.
  • [221] Marfe G, Perna S, Hermann A. Challenges in healthcare waste management of the UN 2030 agenda in the COVID-19 Era. Am J Environ Sci 2022;18:20–41. [CrossRef]
  • [222] Thomas TA. Recycling: Wealth from waste. Curr Med Issues 2017;15:252–256.
  • [223] Giakoumakis G, Politi D, Sidiras D. Medical waste treatment technologies for energy, fuels, and materials production: A review. Energies 2021;14:8065. [CrossRef]
  • [224] Mohiuddin A. Medical waste: A nobody’s responsibility after disposal. Int J Environ Sci Nat Resour 2018;15:45–51. [CrossRef]
  • [225] Yi TC, Jusoh MNH. Overview of clinical waste management in Malaysia. Front Water Environ 2021;1:47–57. [CrossRef]
  • [226] Coker AO, Sangodoyin AY, Ogunlowo OO. Managing hospital wastes in Nigeria. Available at: https://wedc-knowledge.lboro.ac.uk/resources/conference/24/Coker.pdf. Accessed Jul 3, 2024.
  • [227] Ignou AA. Safe management of wastes from health-care activities, 2nd ed. Malta: World Health Organization, 2012.
  • [228] Stringer R. Medical waste and human rights. Available at: https://noharm-europe.org/sites/default/files/documents-files/1684/MedWaste_Human_Rights_Report.pdf. Accessed on Jul 3, 2024.
  • [229] Chisholm JM, Zamani R, Negm AM, Said N, Abdel Daiem MM, Dibaj M, et al. Sustainable waste management of medical waste in African developing countries: A narrative review. Waste Manag Res 2021;39:11491163. [CrossRef]
  • [230] Yong Z, Gang X, Guanxing W, Tao Z, Dawei J. Medical waste management in China: A case study of Nanjing. Waste Manag 2009;29:13761382. [CrossRef]
  • [231] Negishi R, Kawahara K. Infectious waste management in Japan: Assessment of current trends in waste measurement and reporting in general and psychiatric hospitals. J Mater Cycles Waste Manag 2022;25:421429. [CrossRef]
  • [232] Giacchetta G, Marchetti B. Medical waste management: A case study in a small size hospital of central Italy. Strat Outsource Int J 2013;6:65–84. [CrossRef]
  • [233] Hassan MF, Shareefdeen Z. Recent developments in sustainable management of healthcare waste and treatment technologies. J Sustain Dev Energy Water Environ Syst 2022;10:1090384. [CrossRef]
  • [234] Dhanraj K. Perceptions of the pharmaceutical industry and regulators in South Africa towards registration harmonisation in the Southern African development community (SADC). Available at: https://etd.uwc.ac.za/handle/11394/7956. Accessed on Jul 3, 2024. [235] Savitha KL, Joseph TJ. Efficiency of hospital waste management in Kerala: An analysis based on hospital ownership. Int J Res Anal Rev 2018;5:239–244.
  • [236] Ezirim I, Agbo F. Role of national policy in improving health care waste management in Nigeria. J Health Pollut 2018;8:180913. [CrossRef]
  • [237] Manegdeg F, Coronado LO, Paña R. Medical waste treatment and electricity generation using pyrolyzer-rankine cycle for specialty hospitals in Quezon city, Philippines. IOP Conf Ser 2020;463:012180. [CrossRef]
  • [238] Capoor MR, Bhowmik KT. Current perspectives on biomedical waste management: Rules, conventions and treatment technologies. Indian J Med Microbiol 2017;35:157164. [CrossRef]
  • [239] Coker A, Sangodoyin A, Sridhar M, Booth C, Olomolaiye P, Hammond F. Medical waste management in Ibadan, Nigeria: Obstacles and prospects. Waste Manag 2009;29:804811. [CrossRef]
  • [240] Honest A, Saria J. Performance of experimental bio-digestion for pathological and biodegradable waste management at Mwananyamala Regional Referral Hospital Tanzania. J Environ Prot 2020;11:838– 847. [CrossRef]
  • [241] Songa SW. Placenta disposal to produce biogas in 10 referral hospitals. IPP Media, Dar es Salaam. 2022 May 12;1–5.
  • [242] Kellner C. Monitoring the placenta digester at Mwananyamala Referral Hospital; Dar es Salaam. 2019. Available at: http://greenhealthcarewaste.org/wp-content/uploads/2020/12/Tanzania-Monitoring- the-Placenta-Digester-at-Mwananyamala-Referral-Hospital.pdf. Accessed on Jul 3, 2024.
  • [243] Kellner C. Biogas plants at Sinza hospital; Dar es Salaam. Available at: https://greenhealthcarewaste.org/wp-content/uploads/2020/12/Tanzania-Report-Biogas-Plants-at-Sinza-Hospital.pdf. Accessed on Jul 3, 2024.
  • [244] Yeo S. Placenta used to generate clean energy in Filipino hospital. Available at: https://www.climatechangenews.com/2013/08/29/placenta-used-to-generate-clean-energy-in-filipino-hospital/. Accessed on Jul 3, 2024.
  • [245] Shahi PK. Kalikot hospital to run biogas plant. Available at: https://myrepublica.nagariknetwork.com/news/kalikot-hospital-to-run-biogas-plant/. Accessed Jul 3, 2024.
  • [246] The Indian Express (Express News Service). Holy family hospital starts Rs 13-lakh biogas plant to convert kitchen waste into gas for cooking purposes. Available at: https://indianexpress.com/article/cities/mumbai/holy-family-hospital-starts-rs-13-lakh-biogas-plant-5201852/. Accessed on Jul 3, 2024.
  • [247] Dhakal N, Karki AB, Nakarmi M. Waste to energy: Management of biodegradable healthcare waste through anaerobic digestion. Nepal J Sci Technol 2015;16:41–48. [CrossRef]
  • [248] Rahman KM, Melville L. An investigation into the conversion of non-hazardous medical wastes into biogas-A case study from the Health and Family Planning Sector in Bangladesh. Processes 2023;11:1494. [CrossRef]
  • [249] Fáberová M, Ivanová L, Szabová P, Štolcová M, Bodík I. The influence of selected pharmaceuticals on biogas production from laboratory and real anaerobic sludge. Environ Sci Pollut Res Int 2019;26:3184631855. [CrossRef]
  • [250] Wang C, Jianfeng L, Qiumin L, Li H, Changmei W, Kai W, et al. A review of the effects of antibiotics on the anaerobic digestion of swine waste. Curr Opin Environ Sci Health 2021;25:100312. [CrossRef]
  • [251] Stergar V, Konèan JZ. The determination of anaerobic biodegradability of pharmaceutical waste using advanced bioassay technique. Chem Biomol Eng 2002;16:17–24.
  • [252] Díaz-Cubilla M, Letón P, Luna-Vázquez C, Marrón-Romera M, Boltes K. Effect of carbamazepine, ibuprofen, triclosan and sulfamethoxazole on anaerobic bioreactor performance: Combining cell damage, ecotoxicity and chemical information. Toxics 2022;10:42. [CrossRef] [253] Nacheva PM, Peña-Loera B, Moralez-Guzmán F. Treatment of chemical-pharmaceutical wastewater in packed bed anaerobic reactors. Water Sci Technol 2006;54:157163. [CrossRef]
  • [254] Aski AL, Borghei A, Zenouzi A, Ashrafi N, Taherzadeh MJ. Steam explosion pretreatment of sludge for pharmaceutical removal and heavy metal release to improve biodegradability and biogas production. Fermentation 2020;6:34. [CrossRef]
  • [255] Chen Z, Li X, Hu D, Cui Y, Gu F, Jia F, et al. Performance and methane fermentation characteristics of a pilot scale anaerobic membrane bioreactor (AnMBR) for treating pharmaceutical wastewater containing m-cresol (MC) and iso-propyl alcohol (IPA). Chemosphere 2018;206:750758. [CrossRef]
  • [256] Gogoi M, Goswami R, Hazarika S. Membrane-based treatment of wastewater generated in pharmaceutical and textile industries for a sustainable environment. In: Verma S, Khan R, Mili M, Hashmi SAR, Srivastava AK, editors. Advanced Materials from Recycled Waste. 1st ed. Amsterdam, Netherlands: Elsevier; 2023. p. 87109. [CrossRef]
  • [257] Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. J Environ Manage 2022;302:113998.
  • [CrossRef]
  • [258] Carballa M, Omil F, Ternes T, Lema JM. Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res 2007;41:21392150. [CrossRef]
  • [259] Perez-Lemus N, Lopez-Serna R, Perez-Elvira SI, Barrado E. Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy. Microchem J 2022;175:107148. [CrossRef]
  • [260] Gaballah MS, Chand H, Guo J, Zhang C. Mixed veterinary antibiotics removal and effects on anaerobic digestion of animal wastes: Current practices and future perspectives. Chem Eng J 2024;483:149131. [CrossRef]
  • [261] Nesse AS, Jasinska A, Stoknes K, Aanrud SG, Ogner Risinggård K, Kallenborn R, et al. Low uptake of pharmaceuticals in edible mushrooms grown in polluted biogas digestate. Chemosphere 2024;351:141169. [CrossRef]
  • [262] Ismail ZZ, Talib AR. Recycled medical cotton industry waste as a source of biogas recovery. J Clean Prod 2016;112:44134418.
  • [263] Stringer R. A win-win for disposing medical waste with biodigestion. Available at: https://www.greenpolicyplatform.org/blog/win-win-disposing-medical-waste-biodigestion. Accessed on Jul 3, 2024.
  • [264] Gustavsson LK, Heger S, Ejlertsson J, Ribe V, Hollert H, Keiter SH. Industrial sludge containing pharmaceutical residues and explosives alters inherent toxic properties when co-digested with oat and post- treated in reed beds. Environ Sci Eur 2014;26:8. [CrossRef]
  • [265] Dai C, Yang L, Wang J, Li D, Zhang Y, Zhou X. Enhancing anaerobic digestion of pharmaceutical industries wastewater with the composite addition of zero valent iron (ZVI) and granular activated carbon (GAC). Bioresour Technol 2022;346:126566. [CrossRef]
  • [266] Embio Limited. Energy recovery from pharmaceutical waste. Available at: https://www.mahaurja.com/meda/data/off_grid_bio_energy/Success%20Pharmaceutical%20Waste.pdf. Accessed on Jul 3, 2024.
  • [267] Krishna N. Case study–Biogas production from pharmaceutical waste. Available at: https://biogas-india.com/case-study-biogas-production-from-pharmaceutical-waste/. Accessed on Jul 3, 2024.
  • [268] Czubaszek R. The assessment of the suitability of lemon balm and alder buckthorn wastes for the biogas production. J Ecol Eng 2019;20:152–158. [CrossRef]
  • [269] Adetunji CO, Olaniyan OT, Anani OA, Bodunrinde RE, Osemweige OO, Ubi BE. Integrated processes for production of pharmaceutical products from agro-wastes. Biomass Biofuels Biochem; 2022;2022:439461. [CrossRef]
  • [270] Sienkiewicz A, Piotrowska-Niczyporuk A, Bajguz A. Herbal industry wastes as potential materials for biofuel production. Proceedings 2020;51:6. [CrossRef]
  • [271] Fardad K, et al. Biodegradation of medicinal plants waste in an anaerobic digestion reactor for biogas production Document Other les. Comput Mater Contin 2018;55:318392.
  • [272] Yitayal A, Mekibib D, Araya A. Study on biogas production potential of leaves of Justicia schimperiana and macro-nutrients on the slurry. Int J Waste Resour 2017;7:294.
  • [273] Patel S, Das P, Priyadarshi M, Babbar M, Hussain A, Bharat TV. Anaerobic digestion of herbal waste: A waste to energy option. Environ Monit Assess 2024;196:600. [CrossRef]
  • [274] Lewicki A, Piotrowska-Niczyporuk A, Bajguz A. The biogas production from herbs and waste from herbal industry. J Res Appl Agric Eng 2013;58:114–117.
  • [275] Zhang H, Yin M, Li S, Zhang S, Han G. The removal of erythromycin and its effects on anaerobic fermentation. Int J Environ Res Public Health 2022;19:7256. [CrossRef]
  • [276] Kim H, Choi H, Lee C. The potential use of human urine as a solvent for biogas upgrading. J Water Process Eng 2020;36:101343. [CrossRef]
  • [277] Sau SK, Mann TK, Giri A, Nandi PK. Effect of human urine during production of methane from boiled rice. Int J Sci Res 2013;2:60–64.
  • [278] The Guardian Newspapers. Generating electricity, cooking gas from urine, biodegradable waste. Available at: https://guardian.ng/generating-electricity-cooking-gas-from-urine-biodegradable- waste/#google_vignette. Accessed on Jul 3, 2024.
  • [279] Appala VNSG, Pandhare NN, Bajpai S. Mathematical models for optimization of anaerobic digestion and biogas production. In: Nandabalan YK, Garg VK, Labhsetwar NK, Singh A, editors. Zero Waste Biorefinery. Singapore: Springer; 2022. p. 575–591. [CrossRef]
  • [280] Rorke DCS, Lekha P, Kana GEB, Sithole BB. Effect of pharmaceutical wastewater as nitrogen source on the optimization of simultaneous saccharification and fermentation hydrogen production from paper mill sludge. 2022;25:100619. [CrossRef]
  • [281] Etheridge SP. Biogas applications. Available at: https://cetesb.sp.gov.br/biogas/wp-content/uploads/sites/3/2014/01/aplicacoes_do_biogas_na_europa_stephen_etheridge.pdf. Accessed on Jul 3,2024.
  • [282] Sapkota B, Pariatamby A. Pharmaceutical waste management system - Are the current techniques sustainable, eco-friendly and circular? A review. Waste Manag 2023;168:8397. [CrossRef]
  • [283] Auta A, Omale S, Shalkur D, Abiodun AH. Unused medicines in Nigerian households: Types and disposal practices. J Pharmacol Pharmacother 2011;2:195196. [CrossRef]
  • [284] WHO. Safe disposal of unwanted pharmaceuticals in and after emergencies. Pan Am J Public Heal 2000;7:205–208. [CrossRef]
  • [285] Okoro RN, Peter E. Household medicines disposal practices in Maiduguri, North-Eastern Nigeria. Int J Heal Life Sci 2019;6:e97085. [CrossRef]
  • [286] Gerwig K, Permanente K. Waste management & healthcare. Available at: https://noharm-global.org/hcwh-content-tags/health-care-waste-management?page=1. Accessed on Jul 3, 2024.
  • [287] Obayomi KS, Lau SY, Mayowa IE, Danquah MK, Zhang JC, Tung M, et al. Recent advances in graphene-derived materials for biomedical waste treatment. J Water Process Eng 2023;51:103440. [CrossRef]
  • [288] Awodele O, Adewoye AA, Oparah AC. Assessment of medical waste management in seven hospitals in Lagos, Nigeria. BMC Public Health 2016;16:269. [CrossRef]
  • [289] Nyaga MN, Nyagah DM, Njagi A. Pharmaceutical waste: Overview, management, and impact of improper disposal. Med Pharmacol. Available at: https://www.peerscientist.com/volume3/issue2/e1000028/pharmaceutical-waste-overview-management-and-impact-of-improper-disposal.pdf. Accessed on Jul 3, 2024.
  • [290] T. Honkanen, “Medical waste management in Thailand and Vietnam,” Licentiate Master of Tech. Thesis on Sustainability Sciences, LUT School of Energy Systems, Lappeenranta–Lahti University of Technology (LUT), 2024.
  • [291] Tóth AJ, Gergely F, Mizsey P. Physicochemical treatment of pharmaceutical process wastewater: Distillation and membrane processes. Chem Eng 2011;55:59–67. [CrossRef]
  • [292] Clarke E, Hottor J. Health care waste management in Ghana-MOH policy and guidelines for health institutions. Available at: https://www.moh.gov.gh/wp-content/uploads/2016/02/Health-Care-Waste-Management-Policy-and-Guidelines.pdf. Accessed on Jul 3, 2024.
There are 290 citations in total.

Details

Primary Language English
Subjects Clinical Chemistry
Journal Section Reviews
Authors

Abdulhalım Musa Abubakar 0000-0002-1304-3515

Nasir Musa Haruna This is me 0000-0002-5529-7169

Zidani Danladi Ahmed This is me 0000-0001-5778-6671

Aminullah Zakariyyah Abdul This is me 0009-0005-3823-2856

Muhammad Abbagoni Abubakar This is me 0009-0005-9771-0117

Amina Mohamed Ali This is me 0000-0002-9583-1717

Muhammad Jamil Umar Sabo This is me 0009-0005-3927-1398

Balasubramanian Thiagarajan This is me 0000-0002-8595-2590

Publication Date August 1, 2024
Submission Date January 5, 2023
Published in Issue Year 2024 Volume: 42 Issue: 4

Cite

Vancouver Abubakar AM, Haruna NM, Ahmed ZD, Abdul AZ, Abubakar MA, Ali AM, Sabo MJU, Thiagarajan B. Unlocking biogas production potential: Evaluating the environmental impact and biodegradability of pharmaceutical and medical wastes. SIGMA. 2024;42(4):1261-9.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/