Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 42 Sayı: 5, 1628 - 1645, 04.10.2024

Öz

Kaynakça

  • REFERENCES
  • [1] Garg H, Dave M. Securing IoT Devices and Securely Connecting the Dots Using REST API and Middleware. IEEE IoT-SIU 2019:16. [CrossRef]
  • [2] Ponnusamy V, Sharma B. Investigation on IoT Intrusion Detection in Wireless Environment. IEEE ICCOINS 2021:713. [CrossRef]
  • [3] Vishwakarma SK, Upadhyaya P, Kumari B, Mishra AK. Smart Energy Efficient Home Automation System Using IoT. IEEE IoT-SIU 2019:14. [CrossRef]
  • [4] Afifah K, Fuada S, Putra RVW, Adiono T, Fathany MY. Design of low power mobile application for smart home. IEEE ISESD 2016:127131. [CrossRef]
  • [5] Gebhardt J, Massoth M, Weber S, Wiens T. Ubiquitous Smart Home Controlling Raspberry Embedded System. UBICOMM. 2014.
  • [6] Jain S, Vaibhav A, Goyal L. Raspberry Pi based interactive home automation system through E-mail. IEEE ICROIT 2014:277280. [CrossRef]
  • [7] Ding J, Wang Y. A WiFi-based smart home fall detection system using recurrent neural network. IEEE Trans Consum Electron 2020;66:308317. [CrossRef]
  • [8] Jabbar WA, Kian TK, Ramli RM, Zubir SN, Zamrizaman NSM, Balfaqih M, et al. Design and Fabrication of Smart Home With Internet of Things Enabled Automation System. IEEE Access 2019;7:144059144074. [CrossRef]
  • [9] Kane L, Liu V, McKague M, Walker GR. Network architecture and authentication Scheme for LoRa 2.4 ghz smart homes. IEEE Access 2022;10:9321293230. [CrossRef]
  • [10] Franco P, Martínez JM, Kim YC, Ahmed MA. IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access 2021;9:4532545339. [CrossRef]
  • [11] Allifah NM, Zualkernan IA. Ranking security of IoT-based smart home consumer Devices. IEEE Access 2022;10:1835218369. [CrossRef]
  • [12] Illy P, Kaddoum G, Kaur K, Garg S. ML-Based IDPS enhancement with complementary features for home IoT networks. IEEE Trans Netw Serv Manag 2022;19:772783. [CrossRef]
  • [13] Ulloa-Vásquez F, García-Santander L, Carrizo D, Heredia-Figueroa V. Intelligent electrical pattern recognition of appliances consumption for home energy management using high resolution measurement. IEEE Lat Am Trans 2022;20:326334. [CrossRef]
  • [14] Tahir M, Mohammed AS, Marwaha S, Vij M, Saeed Y, Atif M, et al. Wi-Fi Aided home energy management system and AC prediction through temperature and humidity sensors. IEEE ICCR 2022:19. [CrossRef]
  • [15] Přeučil T, Novotný M. Evaluation of power saving methods for low-power WiFi environment sensors. IEEE MECO 2022:15. [CrossRef]
  • [16] Akkurt GG. Performance indices of soft computing models to predict the heat load of buildings in terms of architectural indicators. J Therm Eng 2017;3:13581374. [CrossRef]
  • [17] Beki C, Sahari N, Ismail N. Internet of things based smart home system Using ESP32 microcontroller. Prog Eng Appl Technol 2020;1:267273.
  • [18] Madhu GM, Vyjayanthi C. Implementation of cost effective smart home controller with android application using Node MCU and internet of things (IOT). IEEE ICEPE 2018:15. [CrossRef]
  • [19] Singh K, Jain A, Thiyagarajan P. Design and implementation of integrated control system for IoT enabled home automation. IEEE ICAC3N 2022:14331437. [CrossRef]
  • [20] Midul MAHS, Pranta SH, Biddut ASI, Siam SI, Hazari MR, Mannan MA. Design and implementation of IoT-based smart energy meter to augment residential energy consumption. IEEE ICREST 2023:106110. [CrossRef]
  • [21] Ain QU, Iqbal S, Mukhtar H. Improving quality of experience using fuzzy controller for Smart homes. IEEE Access 2022;10:11892118908. [CrossRef]
  • [22] Krishna PN, Gupta SR, Shankaranarayanan PV, Sidharth S, Sirphi M. Fuzzy logic based smart home energy management system. IEEE ICCCNT 2018:15. [CrossRef] [23] Sevil M, Elalmıs N, Görgün H, Aydin N. Control of air conditioning with fuzzy logic controller design for smart home systems. Sigma J Eng Nat Sci 2015;33:439463. [CrossRef]
  • [24] Zhang L, Leung H, Chan KCC. Information fusion based smart home control system and its application. IEEE Trans Consum Electron 2008;54:115711565. [CrossRef]
  • [25] Jabeur R, Ouaaline N, Lakrim A. A fuzzy logic controller controls a smart lighting system for energy savings. IEEE IRSEC 2021:16. [CrossRef]
  • [26] Paramathma MK, Devaraj D, Selvi VAI, Karuppasamypandian M. Development of fuzzy logic based approach for consumer side management in smart home. IEEE ICACITE 2021:10561061. [CrossRef]
  • [27] Roy C, Binodon, Karmaker A, Ghosh HR. A naive bayes classifier based energy scheduling for home energy management system (HEMS). IEEE ICECE 2022:212215. [CrossRef]
  • [28] Lu R, Jiang Z, Wu H, Ding Y, Wang D, Zhang HT. Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management. IEEE Trans Ind Inform 2023;19:26622673. [CrossRef]
  • [29] Alhussein M, Aurangzeb K, Haider SI. Hybrid CNN-LSTM model for short-term individual household load Forecasting. IEEE Access 2020;8:180544180557. [CrossRef]
  • [30] Zhou Y, Ren B, Xue X, Chen L. Building energy consumption forecasting based on K-Shape clustering and CNN-LSTM. IEEE ICPET 2022:11471152. [CrossRef]
  • [31] Yan K, Li W, Ji Z, Qi M, Du Y. A Hybrid LSTM neural network for energy consumption forecasting of individual households. IEEE Access 2019;7:157633157642. [CrossRef]
  • [32] Yu L, Qin S, Zhang M, Shen C, Jiang T, Guan X. A review of deep reinforcement learning for smart building energy management. IEEE Internet Things J 2021;8:1204612063. [CrossRef]
  • [33] Han T, Muhammad K, Hussain T, Lloret J, Baik SW. An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J 2021;8:31703179. [CrossRef] [34] Kodama N, Harada T, Miyazaki K. Home energy management algorithm based on deep reinforcement learning using multistep prediction. IEEE Access 2021;9:153108153115. [CrossRef]
  • [35] Gao Y, Li S, Xiao Y, Dong W, Fairbank M, Lu B. An iterative optimization and learning-based iot system for energy management of connected buildings. IEEE Internet Things J 2022;9:2124621259. [CrossRef]
  • [36] Lu R, Bai R, Luo Z, Jiang J, Sun M, Zhang HT. Deep reinforcement learning-based demand response for smart facilities energy management. IEEE Trans Ind Electron 2022;69:85548565. [CrossRef]
  • [37] Home-Assistant [cited 2023 May]. Hassio, Open Source Home Automation Server. Available from: https://www.home-assistant.io/
  • [38] Pishva D, Takeda K. Product-based security model for smart home appliances. IEEE Aerosp Electron Syst Mag 2006;23:3241. [CrossRef]
  • [39] Kumar D, Shen K, Case B, Garg D, Alperovich G, Kuznetsov D, et al. All things considered: An analysis of iot devices on home networks. USENIX Secur Symp 2019:11691185.
  • [40] Jantzen J. Foundations of fuzzy control. A practical approach. 2nd ed. Chichester, UK: Wiley; 2013. [CrossRef]
  • [41] Huang H, LV Y. Short-term Tie-line Power Prediction Based on CNN-LSTM. IEEE EI2 2020:41184122. [CrossRef]
  • [42] Gaur K, Singh SK. CNN-Bi-LSTM Based Household Energy Consumption Prediction. IEEE ICPSC 2021:233237. [CrossRef]
  • [43] Ren L, Dong J, Wang X, Meng Z, Zhao L, Deen MJ. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Trans Ind Inform 2020;17:34783487. [CrossRef]
  • [44] Wang Y, Du X, Lu Z, Duan Q, Wu J. Improved LSTM-based time-series anomaly detection in rail transit operation environments. IEEE Trans Ind Inform 2022;18:90279036. [CrossRef]
  • [45] MQTT-Broker [Internet]. [cited 2023 May]. The Standard for IoT Messaging. Available from: https://mqtt.org/
  • [46] Espressif-ESP01 [Internet]. [cited 2023 May]. ESP8266 ESP-01 Wifi Module. Available from: https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=14&field_download_document_type_tid%5B%5D=510
  • [47] Espressif-NodeMCU [Internet]. [cited 2023 May]. ESP8266 ESP-12E NodeMCU Wifi Module. Available from: https://www.espressif.com/en/support/documents/technical-documents?keys=&field_type_tid%5B%5D=14&field_download_document_type_tid%5B%5D=510
  • [48] Espressif-ESP32 [Internet]. [cited 2023 May]. ESP32-Wroom-32D devkit. Available from: https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=266
  • [49] PZEM-004T [Internet]. [cited 2023 Jun 6]. PZEM-004T V3.0 User Manual. Available from: https://innovatorsguru.com/wp-content/uploads/2019/06/PZEM-004T-V3.0-Datasheet-User- Manual.pdf
  • [50] ESPHomeFlasher [Internet]. [cited 2023 May]. ESP Home Flasher. Available from: https://github.com/esphome/esphome-flasher
  • [51] Jetson-Nano [Internet]. [cited 2023 May]. Nvidia Jetson Nano Developer Kit. Available from: https://developer.nvidia.com/embedded/jetson-nano-developer-kit

Modeling and implementation of demand-side energy management system

Yıl 2024, Cilt: 42 Sayı: 5, 1628 - 1645, 04.10.2024

Öz

In recent years, Internet of Things (IoT) applications have become across-the-board and are used by most smart device users. Wired Communication, Bluetooth, radio frequency (RF), RS485/Modbus, and zonal intercommunication global standard (ZigBee) can be used as IoT communication methods. The low delay times and ability to control homes from outside the building via the Internet are the main reasons wireless fidelity (Wi-Fi) communication is pre-ferred. Commercially produced devices generally use their unique interfaces. The devices do not allow integration to form an intelligent home automation and demand-side energy management system. In addition, the high cost of most commercial products creates barriers for users.
In this study, a local home automation server (LHAS) was created subject to low cost. Smart devices connected to the server through a Wi-Fi network were designed and implemented. The primary purpose of the design is to create an IoT network to form an LHAS. The IoT network will learn the energy consumption behavior of users for future Smart Grids. The designed intelligent devices can provide all the necessary measurements and control of houses. The open-source software Home Assistant (Hassio) was used to create the LHAS. Espressif systems (ESP) series microcontrollers (µCs) were chosen to design intelligent devices. ESP-01, NodeMCU, and ESP-32, the most widely used ESP models, were preferred. A convolutional neural network (CNN)/long short-term memory (LSTM) neural network was designed, and analysis was performed to learn the consumption behavior of residential users.

Kaynakça

  • REFERENCES
  • [1] Garg H, Dave M. Securing IoT Devices and Securely Connecting the Dots Using REST API and Middleware. IEEE IoT-SIU 2019:16. [CrossRef]
  • [2] Ponnusamy V, Sharma B. Investigation on IoT Intrusion Detection in Wireless Environment. IEEE ICCOINS 2021:713. [CrossRef]
  • [3] Vishwakarma SK, Upadhyaya P, Kumari B, Mishra AK. Smart Energy Efficient Home Automation System Using IoT. IEEE IoT-SIU 2019:14. [CrossRef]
  • [4] Afifah K, Fuada S, Putra RVW, Adiono T, Fathany MY. Design of low power mobile application for smart home. IEEE ISESD 2016:127131. [CrossRef]
  • [5] Gebhardt J, Massoth M, Weber S, Wiens T. Ubiquitous Smart Home Controlling Raspberry Embedded System. UBICOMM. 2014.
  • [6] Jain S, Vaibhav A, Goyal L. Raspberry Pi based interactive home automation system through E-mail. IEEE ICROIT 2014:277280. [CrossRef]
  • [7] Ding J, Wang Y. A WiFi-based smart home fall detection system using recurrent neural network. IEEE Trans Consum Electron 2020;66:308317. [CrossRef]
  • [8] Jabbar WA, Kian TK, Ramli RM, Zubir SN, Zamrizaman NSM, Balfaqih M, et al. Design and Fabrication of Smart Home With Internet of Things Enabled Automation System. IEEE Access 2019;7:144059144074. [CrossRef]
  • [9] Kane L, Liu V, McKague M, Walker GR. Network architecture and authentication Scheme for LoRa 2.4 ghz smart homes. IEEE Access 2022;10:9321293230. [CrossRef]
  • [10] Franco P, Martínez JM, Kim YC, Ahmed MA. IoT based approach for load monitoring and activity recognition in smart homes. IEEE Access 2021;9:4532545339. [CrossRef]
  • [11] Allifah NM, Zualkernan IA. Ranking security of IoT-based smart home consumer Devices. IEEE Access 2022;10:1835218369. [CrossRef]
  • [12] Illy P, Kaddoum G, Kaur K, Garg S. ML-Based IDPS enhancement with complementary features for home IoT networks. IEEE Trans Netw Serv Manag 2022;19:772783. [CrossRef]
  • [13] Ulloa-Vásquez F, García-Santander L, Carrizo D, Heredia-Figueroa V. Intelligent electrical pattern recognition of appliances consumption for home energy management using high resolution measurement. IEEE Lat Am Trans 2022;20:326334. [CrossRef]
  • [14] Tahir M, Mohammed AS, Marwaha S, Vij M, Saeed Y, Atif M, et al. Wi-Fi Aided home energy management system and AC prediction through temperature and humidity sensors. IEEE ICCR 2022:19. [CrossRef]
  • [15] Přeučil T, Novotný M. Evaluation of power saving methods for low-power WiFi environment sensors. IEEE MECO 2022:15. [CrossRef]
  • [16] Akkurt GG. Performance indices of soft computing models to predict the heat load of buildings in terms of architectural indicators. J Therm Eng 2017;3:13581374. [CrossRef]
  • [17] Beki C, Sahari N, Ismail N. Internet of things based smart home system Using ESP32 microcontroller. Prog Eng Appl Technol 2020;1:267273.
  • [18] Madhu GM, Vyjayanthi C. Implementation of cost effective smart home controller with android application using Node MCU and internet of things (IOT). IEEE ICEPE 2018:15. [CrossRef]
  • [19] Singh K, Jain A, Thiyagarajan P. Design and implementation of integrated control system for IoT enabled home automation. IEEE ICAC3N 2022:14331437. [CrossRef]
  • [20] Midul MAHS, Pranta SH, Biddut ASI, Siam SI, Hazari MR, Mannan MA. Design and implementation of IoT-based smart energy meter to augment residential energy consumption. IEEE ICREST 2023:106110. [CrossRef]
  • [21] Ain QU, Iqbal S, Mukhtar H. Improving quality of experience using fuzzy controller for Smart homes. IEEE Access 2022;10:11892118908. [CrossRef]
  • [22] Krishna PN, Gupta SR, Shankaranarayanan PV, Sidharth S, Sirphi M. Fuzzy logic based smart home energy management system. IEEE ICCCNT 2018:15. [CrossRef] [23] Sevil M, Elalmıs N, Görgün H, Aydin N. Control of air conditioning with fuzzy logic controller design for smart home systems. Sigma J Eng Nat Sci 2015;33:439463. [CrossRef]
  • [24] Zhang L, Leung H, Chan KCC. Information fusion based smart home control system and its application. IEEE Trans Consum Electron 2008;54:115711565. [CrossRef]
  • [25] Jabeur R, Ouaaline N, Lakrim A. A fuzzy logic controller controls a smart lighting system for energy savings. IEEE IRSEC 2021:16. [CrossRef]
  • [26] Paramathma MK, Devaraj D, Selvi VAI, Karuppasamypandian M. Development of fuzzy logic based approach for consumer side management in smart home. IEEE ICACITE 2021:10561061. [CrossRef]
  • [27] Roy C, Binodon, Karmaker A, Ghosh HR. A naive bayes classifier based energy scheduling for home energy management system (HEMS). IEEE ICECE 2022:212215. [CrossRef]
  • [28] Lu R, Jiang Z, Wu H, Ding Y, Wang D, Zhang HT. Reward Shaping-Based Actor–Critic Deep Reinforcement Learning for Residential Energy Management. IEEE Trans Ind Inform 2023;19:26622673. [CrossRef]
  • [29] Alhussein M, Aurangzeb K, Haider SI. Hybrid CNN-LSTM model for short-term individual household load Forecasting. IEEE Access 2020;8:180544180557. [CrossRef]
  • [30] Zhou Y, Ren B, Xue X, Chen L. Building energy consumption forecasting based on K-Shape clustering and CNN-LSTM. IEEE ICPET 2022:11471152. [CrossRef]
  • [31] Yan K, Li W, Ji Z, Qi M, Du Y. A Hybrid LSTM neural network for energy consumption forecasting of individual households. IEEE Access 2019;7:157633157642. [CrossRef]
  • [32] Yu L, Qin S, Zhang M, Shen C, Jiang T, Guan X. A review of deep reinforcement learning for smart building energy management. IEEE Internet Things J 2021;8:1204612063. [CrossRef]
  • [33] Han T, Muhammad K, Hussain T, Lloret J, Baik SW. An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J 2021;8:31703179. [CrossRef] [34] Kodama N, Harada T, Miyazaki K. Home energy management algorithm based on deep reinforcement learning using multistep prediction. IEEE Access 2021;9:153108153115. [CrossRef]
  • [35] Gao Y, Li S, Xiao Y, Dong W, Fairbank M, Lu B. An iterative optimization and learning-based iot system for energy management of connected buildings. IEEE Internet Things J 2022;9:2124621259. [CrossRef]
  • [36] Lu R, Bai R, Luo Z, Jiang J, Sun M, Zhang HT. Deep reinforcement learning-based demand response for smart facilities energy management. IEEE Trans Ind Electron 2022;69:85548565. [CrossRef]
  • [37] Home-Assistant [cited 2023 May]. Hassio, Open Source Home Automation Server. Available from: https://www.home-assistant.io/
  • [38] Pishva D, Takeda K. Product-based security model for smart home appliances. IEEE Aerosp Electron Syst Mag 2006;23:3241. [CrossRef]
  • [39] Kumar D, Shen K, Case B, Garg D, Alperovich G, Kuznetsov D, et al. All things considered: An analysis of iot devices on home networks. USENIX Secur Symp 2019:11691185.
  • [40] Jantzen J. Foundations of fuzzy control. A practical approach. 2nd ed. Chichester, UK: Wiley; 2013. [CrossRef]
  • [41] Huang H, LV Y. Short-term Tie-line Power Prediction Based on CNN-LSTM. IEEE EI2 2020:41184122. [CrossRef]
  • [42] Gaur K, Singh SK. CNN-Bi-LSTM Based Household Energy Consumption Prediction. IEEE ICPSC 2021:233237. [CrossRef]
  • [43] Ren L, Dong J, Wang X, Meng Z, Zhao L, Deen MJ. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Trans Ind Inform 2020;17:34783487. [CrossRef]
  • [44] Wang Y, Du X, Lu Z, Duan Q, Wu J. Improved LSTM-based time-series anomaly detection in rail transit operation environments. IEEE Trans Ind Inform 2022;18:90279036. [CrossRef]
  • [45] MQTT-Broker [Internet]. [cited 2023 May]. The Standard for IoT Messaging. Available from: https://mqtt.org/
  • [46] Espressif-ESP01 [Internet]. [cited 2023 May]. ESP8266 ESP-01 Wifi Module. Available from: https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=14&field_download_document_type_tid%5B%5D=510
  • [47] Espressif-NodeMCU [Internet]. [cited 2023 May]. ESP8266 ESP-12E NodeMCU Wifi Module. Available from: https://www.espressif.com/en/support/documents/technical-documents?keys=&field_type_tid%5B%5D=14&field_download_document_type_tid%5B%5D=510
  • [48] Espressif-ESP32 [Internet]. [cited 2023 May]. ESP32-Wroom-32D devkit. Available from: https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=266
  • [49] PZEM-004T [Internet]. [cited 2023 Jun 6]. PZEM-004T V3.0 User Manual. Available from: https://innovatorsguru.com/wp-content/uploads/2019/06/PZEM-004T-V3.0-Datasheet-User- Manual.pdf
  • [50] ESPHomeFlasher [Internet]. [cited 2023 May]. ESP Home Flasher. Available from: https://github.com/esphome/esphome-flasher
  • [51] Jetson-Nano [Internet]. [cited 2023 May]. Nvidia Jetson Nano Developer Kit. Available from: https://developer.nvidia.com/embedded/jetson-nano-developer-kit
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Research Articles
Yazarlar

Abdulkadir Gözüoğlu 0000-0002-6968-379X

Okan Ozgonenel 0000-0001-9995-1460

Cenk Gezegin

Yayımlanma Tarihi 4 Ekim 2024
Gönderilme Tarihi 23 Şubat 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 42 Sayı: 5

Kaynak Göster

Vancouver Gözüoğlu A, Ozgonenel O, Gezegin C. Modeling and implementation of demand-side energy management system. SIGMA. 2024;42(5):1628-45.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/