Year 2018,
Volume: 1 Issue: 1, 6 - 12, 30.09.2018
Abdullah Onur Özdemir
,
Bayram Kılıç
,
Emre Arabacı
,
Recep Çağrı Orman
References
- 1. Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, vol. 122, p. 403-409, DOI: 10.1016/j.ijheatmasstransfer.2018.01.132.
- 2. Xu, J., Zheng, Y., Wang, Y., Yang, X., Yu, C., Xie, X., ... & Zhao, X. (2017). An actual thermal efficiency expression for heat engines: effect of heat transfer roadmaps. International Journal of Heat and Mass Transfer, vol. 113, p. 556-568, DOI: 10.1016/j.ijheatmasstransfer.2017.05.104.
- 3. Bejan, A. (2013). Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press.
- 4. Caton, J. A. (2002). Illustration of the use of an instructional version of a thermodynamic cycle simulation for a commercial automotive spark-ignition engine. International Journal of Mechanical Engineering Education, vol. 30, p. 283-297, DOI: 10.7227/IJMEE.30.4.1.
- 5. Wu, Z., Chen, L., Ge, Y., & Sun, F. (2017). Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. The European Physical Journal Plus, vol.132(5), p.(203)1-17 DOI: 10.1140/epjp/i2017-11465-1.
- 6. Berry, R. S. (2000). Thermodynamic optimization of finite-time processes. J. Wiley.
- 7. Chen, L. (2004). Advances in finite time thermodynamics: analysis and optimization. Nova Publishers.
- 8. Chen, L. G., & Xia, S. J. (2016). Generalized thermodynamic dynamic-optimization for irreversible processes.
- 9. Ge, Y., Chen, L., Qin, X., & Xie, Z. (2017). Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid. The European Physical Journal Plus, vol. 132(5), p. (209)1-10, DOI: 10.1140/epjp/i2017-11485-9.
- 10. Ge, Y., Chen, L., & Sun, F. (2016). Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, vol.18(4), p.139 DOI: 10.3390/e18040139.
- 11. Wu, Z., Chen, L., & Feng, H. (2018). Thermodynamic optimization for an endoreversible Dual-Miller cycle (DMC) with finite speed of piston. Entropy, vol. 20(3), p. 165, DOI: doi.org/10.3390/e20030165.
- 12. Ebrahimi, R. (2010). Effects of Variable Specific Heat Ratio on Performance of an Endoreversible Otto Cycle. Acta Physica Polonica, A., vol.117(6) p. 887-891, DOI: 10.12693/APhysPolA.117.887.
- 13. Chen, L., Wu, C., Sun, F., & Cao, S. (1998). Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle. Energy conversion and management, vol. 39(7), p. 643-648, DOI: doi.org/10.1016/S0196-8904(97)10003-6.
- 14. Hou, S. S. (2007). Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations. Energy Conversion and Management, vol. 48(5), p. 1683-1690, DOI: 10.1016/j.enconman.2006.11.001.
- 15. Ge, Y., Chen, L., Qin, X., & Xie, Z. (2017). Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid. The European Physical Journal Plus, vol. 132(5), p. (209)2-9, DOI: 10.1140/epjp/i2017-11485-9.
- 16. Ge, Y., Chen, L., & Sun, F. (2013). Ecological optimization of an irreversible Otto cycle. Arabian Journal for Science and Engineering, vol. 38(2), p. 373-381, DOI: . 10.1007/s13369-012-0434-8.
- 17. Ebrahimi, R., & Hoseinpour, M. (2013). Performance analysis of irreversible Miller cycle under variable compression ratio. Journal of Thermophysics and Heat Transfer, vol. 27(3), p. 542-548, DOI: 10.2514/1.T3981.
- 18. Sieniutycz, S., & Shiner, J. S. (1994). Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics. Journal of Non-Equilibrium Thermodynamics, 19(4), 303-348, DOI: 10.1515/jnet.1994.19.4.303.
- 19. You, J., Chen, L., Wu, Z., & Sun, F. (2018). Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Science China Technological Sciences, vol. 61(3), p. 453-463, DOI: 10.1007/s11431-017-9108-2.
- 20. Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, vol. 124, p. 46-57, DOI: 10.1016/j.ijheatmasstransfer.2018.03.049.
- 21. Mousapour, A., Hajipour, A., Rashidi, M. M., & Freidoonimehr, N. (2016). Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy, vol. 94, p. 100-109, DOI: 10.1016/j.energy.2015.10.073.
- 22. Gonca, G., & Sahin, B. (2017). Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Applied Thermal Engineering, vol.118, p. 138-146, DOI: 10.1016/j.applthermaleng.2017.02.039.
- 23. Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., vol. 124, no. 1 p. 29-34, DOI: 12693/APhysPolA.124.29.
- 24. Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, vol. 53, no. 5-6, p. 1289-1297, DOI:10.1016/j.mcm.2010.12.015.
- 25. Ebrahimi, R. (2018). Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle. Acta Physica Polonica A, vol. 133, no. 1, p. 201-205, DOI: 10.12693/APhysPolA.133.201.
- 26. Ge, Y., Chen, L., Sun, F., & Wu, C. (2005). Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid. International Journal of Thermal Sciences, vol. 44 no. 5, p. 506-511, DOI:10.1016/j.ijthermalsci.2004.10.001.
- 27. Zhao, Y., & Chen, J. (2007). An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis. International Journal of Thermal Sciences, vol. 46, no. 6, p. 605-613, DOI:10.1016/j.ijthermalsci.2006.04.005.
Effect of mean piston speed and residual gas fraction on performance of a four-stroke irreversible Otto cycle engine
Year 2018,
Volume: 1 Issue: 1, 6 - 12, 30.09.2018
Abdullah Onur Özdemir
,
Bayram Kılıç
,
Emre Arabacı
,
Recep Çağrı Orman
Abstract
In this study, a four-stroke irreversible Otto
cycle model was constructed using the finite time thermodynamics to investigate
the effect of the mean piston speed and the residual gas fraction on the cycle
(or engine) performance. Fuel consumption was taken as a function of mean
piston speed, and initial cycle temperature was considered as a function of
residual gas fraction. It has been assumed that the specific heat does not
change depending on the temperature. A detailed numerical example study has
been made to see the effect of the mean piston speed and the residual gas
fraction on engine performance. As a result of the numerical example made, the
cycle thermal efficiency and the dimensionless power output were observed with
the increase of the residual gas amount and the mean piston speed. We think
that the results obtained are especially important for engine designers.
References
- 1. Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, vol. 122, p. 403-409, DOI: 10.1016/j.ijheatmasstransfer.2018.01.132.
- 2. Xu, J., Zheng, Y., Wang, Y., Yang, X., Yu, C., Xie, X., ... & Zhao, X. (2017). An actual thermal efficiency expression for heat engines: effect of heat transfer roadmaps. International Journal of Heat and Mass Transfer, vol. 113, p. 556-568, DOI: 10.1016/j.ijheatmasstransfer.2017.05.104.
- 3. Bejan, A. (2013). Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press.
- 4. Caton, J. A. (2002). Illustration of the use of an instructional version of a thermodynamic cycle simulation for a commercial automotive spark-ignition engine. International Journal of Mechanical Engineering Education, vol. 30, p. 283-297, DOI: 10.7227/IJMEE.30.4.1.
- 5. Wu, Z., Chen, L., Ge, Y., & Sun, F. (2017). Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. The European Physical Journal Plus, vol.132(5), p.(203)1-17 DOI: 10.1140/epjp/i2017-11465-1.
- 6. Berry, R. S. (2000). Thermodynamic optimization of finite-time processes. J. Wiley.
- 7. Chen, L. (2004). Advances in finite time thermodynamics: analysis and optimization. Nova Publishers.
- 8. Chen, L. G., & Xia, S. J. (2016). Generalized thermodynamic dynamic-optimization for irreversible processes.
- 9. Ge, Y., Chen, L., Qin, X., & Xie, Z. (2017). Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid. The European Physical Journal Plus, vol. 132(5), p. (209)1-10, DOI: 10.1140/epjp/i2017-11485-9.
- 10. Ge, Y., Chen, L., & Sun, F. (2016). Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, vol.18(4), p.139 DOI: 10.3390/e18040139.
- 11. Wu, Z., Chen, L., & Feng, H. (2018). Thermodynamic optimization for an endoreversible Dual-Miller cycle (DMC) with finite speed of piston. Entropy, vol. 20(3), p. 165, DOI: doi.org/10.3390/e20030165.
- 12. Ebrahimi, R. (2010). Effects of Variable Specific Heat Ratio on Performance of an Endoreversible Otto Cycle. Acta Physica Polonica, A., vol.117(6) p. 887-891, DOI: 10.12693/APhysPolA.117.887.
- 13. Chen, L., Wu, C., Sun, F., & Cao, S. (1998). Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle. Energy conversion and management, vol. 39(7), p. 643-648, DOI: doi.org/10.1016/S0196-8904(97)10003-6.
- 14. Hou, S. S. (2007). Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations. Energy Conversion and Management, vol. 48(5), p. 1683-1690, DOI: 10.1016/j.enconman.2006.11.001.
- 15. Ge, Y., Chen, L., Qin, X., & Xie, Z. (2017). Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid. The European Physical Journal Plus, vol. 132(5), p. (209)2-9, DOI: 10.1140/epjp/i2017-11485-9.
- 16. Ge, Y., Chen, L., & Sun, F. (2013). Ecological optimization of an irreversible Otto cycle. Arabian Journal for Science and Engineering, vol. 38(2), p. 373-381, DOI: . 10.1007/s13369-012-0434-8.
- 17. Ebrahimi, R., & Hoseinpour, M. (2013). Performance analysis of irreversible Miller cycle under variable compression ratio. Journal of Thermophysics and Heat Transfer, vol. 27(3), p. 542-548, DOI: 10.2514/1.T3981.
- 18. Sieniutycz, S., & Shiner, J. S. (1994). Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics. Journal of Non-Equilibrium Thermodynamics, 19(4), 303-348, DOI: 10.1515/jnet.1994.19.4.303.
- 19. You, J., Chen, L., Wu, Z., & Sun, F. (2018). Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Science China Technological Sciences, vol. 61(3), p. 453-463, DOI: 10.1007/s11431-017-9108-2.
- 20. Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, vol. 124, p. 46-57, DOI: 10.1016/j.ijheatmasstransfer.2018.03.049.
- 21. Mousapour, A., Hajipour, A., Rashidi, M. M., & Freidoonimehr, N. (2016). Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction. Energy, vol. 94, p. 100-109, DOI: 10.1016/j.energy.2015.10.073.
- 22. Gonca, G., & Sahin, B. (2017). Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Applied Thermal Engineering, vol.118, p. 138-146, DOI: 10.1016/j.applthermaleng.2017.02.039.
- 23. Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., vol. 124, no. 1 p. 29-34, DOI: 12693/APhysPolA.124.29.
- 24. Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, vol. 53, no. 5-6, p. 1289-1297, DOI:10.1016/j.mcm.2010.12.015.
- 25. Ebrahimi, R. (2018). Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle. Acta Physica Polonica A, vol. 133, no. 1, p. 201-205, DOI: 10.12693/APhysPolA.133.201.
- 26. Ge, Y., Chen, L., Sun, F., & Wu, C. (2005). Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid. International Journal of Thermal Sciences, vol. 44 no. 5, p. 506-511, DOI:10.1016/j.ijthermalsci.2004.10.001.
- 27. Zhao, Y., & Chen, J. (2007). An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis. International Journal of Thermal Sciences, vol. 46, no. 6, p. 605-613, DOI:10.1016/j.ijthermalsci.2006.04.005.