Araştırma Makalesi
BibTex RIS Kaynak Göster

Hafif Beton Duvarlarda Ses İletim Kaybının Belirlenmesi ve Yapay Sinir Ağının Modellenmesi

Yıl 2018, Cilt: 6 Sayı: 3, 461 - 477, 01.09.2018
https://doi.org/10.15317/Scitech.2018.145

Öz

Bu makalede, ana yolu trafik gürültüsüne karşı hafif beton duvarlardan ses iletim kayıplarının analizi yapılmıştır. Duvarlar genellikle Türkiye'de ısı yalıtım amacıyla kullanılmaktadır. Ses iletimi ANN kullanılarak modellenmiştir. Giriş parametreleri frekans, hafif beton duvarın yoğunluğu ve hafif beton duvar yapısının kalınlığı (f, M, d2) ve çıkış parametresi TS tanımlanmıştır. TS analizinin sonuçları ve modelleme sonuçları birlikte özetlendiğinde; ses iletimi kayıpları daha yüksek frekanslar, daha yüksek duvar yoğunlukları ve artan duvar kesitleri ile gelişir. Türkiye standart Enstitüsü (TSE 825) tarafından öngörülen tek katmanlı hafif beton duvarların yeterli ısı yalıtımına bakılmaksızın, duvar kesitlerinin ses iletimi açısından yetersiz olduğu bulunmuştur. Tek katmanlı hafif beton duvarların düzenlemelerinin ısı yalıtımının yanı sıra, bu çalışmada, ses iletimi kayıplarını analiz etmek için de gerekli olduğu ve daha sonra duvar kesitlerinin boyutlandırılması gerektiği bulunmuştur.

Kaynakça

  • Ballagh, K.O., “Accuracy of Prediction Methods for Sound Transmission Los, Inter-Noise 2004”, The 33rd International Congress and Exposition on Noise Control Engineering, New Zealand, 2004.
  • Bao, C., Pan, J., 1997, “Experimental Study of Different Approaches for Active Control of Sound Transmission Through Double Walls”, Journal of Acoustical Society of America, Vol. 102, pp. 1664-1670.
  • Beranek, L.L., Ver, I. L., 1992, Noise and Vibration Control Engineering Principles and Aplications. A Wiley-Interscience Publication, New York, p. 633.
  • Croome, D. J., 1992, Noise and the Design of Buildings and Services, Construction Press, New York, p. 31.
  • Jeona, J.Y., Ryu, J. K, Leea, P. J., 2010, “A Quantification Model of Overall Dissatisfaction with Indoor Noise Environment İn Residential Buildings”, Applied Acoustics, Vol. 71, pp. 914-921. 3]
  • Julien, L., Noureddine, A., 2009, “Numerical and Experimental Investigation of the Effect of Structural Links on the Sound Transmission of a Lightweight Double Panel Structure”, Journal of Sound and Vibration, Vol. 324, pp. 712–732.
  • Kalogirou, S.A., Bojic, M., 2000, “Artificial Neural Networks for the Prediction of The Energy Consumption of a Passive Solar Building”, Energy, Vol. 25, pp. 479–491.
  • Kalogirou, S.A., 2000, “Applications of Artificial Neural-networks for Energy Systems”, Applied Energy, Vol. 67, pp. 17–35.
  • Kalogirou, S.A., 2003, “Artificial Intelligence for the Modeling and Control of Combustion Processes: a Review”, Progress in Energy and Combustion Science, Vol. 29, pp. 515-566.
  • Kocabas, F., Korkmaz, M., Sorgucu, U., Donmez, S., 2010, “Modeling Of Heating And Cooling Performance of Counter Flow Type Vortex Tube by Using Artificial Neural Network”, International Journal of Refrigeration, Vol. 33, pp. 963-972.
  • Özer, M., 1979, Yapı Akustği ve Ses Yalıtım, Arpaz Publication, Istanbul, Turkey, pp.143.
  • Kumar, M.M., Stoll, N., Stoll, R., 2006, “An Energy-Gain Bounding Approach to Robust Fuzzy Identification”, Automatica, Vol. 42, pp. 711-721.
  • Matsumoto, T., Uchida, M., Sugaya, H., Tachibana, H., 2006, “Development of Multiple Drywall with High Sound Insulation Performance”, Applied Acoustics, Vol. 71, pp. 595-608.13].
  • Olanrewaju, O.A., Jimoh, A.A., Kholopane, P.A., 2012, “Integrated IDA–ANN–DEA for Assessment and Optimization of Energy Consumption in İndustrial Sectors”, Energy, Vol. 46, pp. 629–635.
  • Oldhama, D.J, Mohsen, E.A., 2003, “A Model Investigation of the Acoustical Performance of Courtyard Houses with Respect to Noise from Road Traffic”, Applied Acoustics, Vol. 12, pp. 215-230.
  • Sözen, A., Arcaklioglu, E., 2007, “Exergy Analysis of an Ejector-Absorption Heat Transformer Using Artificial Neural Network Approach”, Applied Thermal Engineering, Vol. 27, 481-491.
  • Safa, M., Samarasinghe, S., 2013, “Modelling Fuel Consumption in Wheat Production Using Artificial Neural Networks”, Energy, Vol. 49, pp. 337–343.
  • Tosun, M., Dincer, K., 2011, “Modelling of a Thermal Insulation System Based on the Coldest Temperature Conditions by Using Artificial Neural Networks to Determine Performance of Building for Wall Types in Turkey, International Journal of Refrigeration, Vol. 34, pp. 362-373.
  • TS 825, Thermal Insulation Requirements for Buildings, Ankara, Turkey, 2008.
  • Vigran, T.E., 2009, “Predicting the Sound Reduction Index of Finite Size Specimen by a Simplified Spatial Windowing Technique”, Journal of Sound and Vibration, Vol. 325, pp. 507–512.
  • Yang, J., Rivard, H., Zmeureanu, R., 2005, “On-line Building Energy Prediction Using Adaptive Artificial Neural Networks”, Energy and Buildings , Vol. 37, pp. 1250–1259.
  • Wang, J., Lu, T.J, Woodhouse, J., Langley, R.S, Evans, J., 2005, “Sound Transmission Through Lightweight Double-Leaf Partitions: Theoretical Modelling”, Journal of Sound and Vibration, Vol. 286, pp. 817–847.
  • WHO, http://www.euro.who.int/en/who-we-are/policy-documents (Accessed 05 May 2012).
  • Zhang, C.L., 2005, “Generalized Correlation of Refrigerant Mass Flow Rate Through Adiabatic Capillary Tubes using Artificial Neural Network”, International Journal of Refrigeration, Vol. 28, pp. 506-514.

DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK

Yıl 2018, Cilt: 6 Sayı: 3, 461 - 477, 01.09.2018
https://doi.org/10.15317/Scitech.2018.145

Öz

In this paper, analysis of sound transmission losses through lightweight concrete walls was conducted against the high way trafic noises. The walls are generally used for thermal insulation purposes in Turkey. Sound transmission was modeled using ANN. Input parameters frequency, density of lightweight concrete wall and thickness of lightweight concrete wall structure (f, M, d2) and output parameter TS were described. When the outcomes of the TS analysis and those of ANN modeling are summarized together; Sound transmission losses improve with higher frequencies, higher wall densities and increased wall cross sections. Regardless of sufficient thermal insulation of single layered lightweight concrete walls as stipulated by the Turkey Institute of Standards (TSE 825), the wall cross sections were found to be insufficient in terms of sound transmission. Beside thermal insulation of the single layered lightweight concrete walls’ regulations, it was found with this study that, it is also necessary to analyze sound transmission lossess, after which the wall cross sections should be sized.

Kaynakça

  • Ballagh, K.O., “Accuracy of Prediction Methods for Sound Transmission Los, Inter-Noise 2004”, The 33rd International Congress and Exposition on Noise Control Engineering, New Zealand, 2004.
  • Bao, C., Pan, J., 1997, “Experimental Study of Different Approaches for Active Control of Sound Transmission Through Double Walls”, Journal of Acoustical Society of America, Vol. 102, pp. 1664-1670.
  • Beranek, L.L., Ver, I. L., 1992, Noise and Vibration Control Engineering Principles and Aplications. A Wiley-Interscience Publication, New York, p. 633.
  • Croome, D. J., 1992, Noise and the Design of Buildings and Services, Construction Press, New York, p. 31.
  • Jeona, J.Y., Ryu, J. K, Leea, P. J., 2010, “A Quantification Model of Overall Dissatisfaction with Indoor Noise Environment İn Residential Buildings”, Applied Acoustics, Vol. 71, pp. 914-921. 3]
  • Julien, L., Noureddine, A., 2009, “Numerical and Experimental Investigation of the Effect of Structural Links on the Sound Transmission of a Lightweight Double Panel Structure”, Journal of Sound and Vibration, Vol. 324, pp. 712–732.
  • Kalogirou, S.A., Bojic, M., 2000, “Artificial Neural Networks for the Prediction of The Energy Consumption of a Passive Solar Building”, Energy, Vol. 25, pp. 479–491.
  • Kalogirou, S.A., 2000, “Applications of Artificial Neural-networks for Energy Systems”, Applied Energy, Vol. 67, pp. 17–35.
  • Kalogirou, S.A., 2003, “Artificial Intelligence for the Modeling and Control of Combustion Processes: a Review”, Progress in Energy and Combustion Science, Vol. 29, pp. 515-566.
  • Kocabas, F., Korkmaz, M., Sorgucu, U., Donmez, S., 2010, “Modeling Of Heating And Cooling Performance of Counter Flow Type Vortex Tube by Using Artificial Neural Network”, International Journal of Refrigeration, Vol. 33, pp. 963-972.
  • Özer, M., 1979, Yapı Akustği ve Ses Yalıtım, Arpaz Publication, Istanbul, Turkey, pp.143.
  • Kumar, M.M., Stoll, N., Stoll, R., 2006, “An Energy-Gain Bounding Approach to Robust Fuzzy Identification”, Automatica, Vol. 42, pp. 711-721.
  • Matsumoto, T., Uchida, M., Sugaya, H., Tachibana, H., 2006, “Development of Multiple Drywall with High Sound Insulation Performance”, Applied Acoustics, Vol. 71, pp. 595-608.13].
  • Olanrewaju, O.A., Jimoh, A.A., Kholopane, P.A., 2012, “Integrated IDA–ANN–DEA for Assessment and Optimization of Energy Consumption in İndustrial Sectors”, Energy, Vol. 46, pp. 629–635.
  • Oldhama, D.J, Mohsen, E.A., 2003, “A Model Investigation of the Acoustical Performance of Courtyard Houses with Respect to Noise from Road Traffic”, Applied Acoustics, Vol. 12, pp. 215-230.
  • Sözen, A., Arcaklioglu, E., 2007, “Exergy Analysis of an Ejector-Absorption Heat Transformer Using Artificial Neural Network Approach”, Applied Thermal Engineering, Vol. 27, 481-491.
  • Safa, M., Samarasinghe, S., 2013, “Modelling Fuel Consumption in Wheat Production Using Artificial Neural Networks”, Energy, Vol. 49, pp. 337–343.
  • Tosun, M., Dincer, K., 2011, “Modelling of a Thermal Insulation System Based on the Coldest Temperature Conditions by Using Artificial Neural Networks to Determine Performance of Building for Wall Types in Turkey, International Journal of Refrigeration, Vol. 34, pp. 362-373.
  • TS 825, Thermal Insulation Requirements for Buildings, Ankara, Turkey, 2008.
  • Vigran, T.E., 2009, “Predicting the Sound Reduction Index of Finite Size Specimen by a Simplified Spatial Windowing Technique”, Journal of Sound and Vibration, Vol. 325, pp. 507–512.
  • Yang, J., Rivard, H., Zmeureanu, R., 2005, “On-line Building Energy Prediction Using Adaptive Artificial Neural Networks”, Energy and Buildings , Vol. 37, pp. 1250–1259.
  • Wang, J., Lu, T.J, Woodhouse, J., Langley, R.S, Evans, J., 2005, “Sound Transmission Through Lightweight Double-Leaf Partitions: Theoretical Modelling”, Journal of Sound and Vibration, Vol. 286, pp. 817–847.
  • WHO, http://www.euro.who.int/en/who-we-are/policy-documents (Accessed 05 May 2012).
  • Zhang, C.L., 2005, “Generalized Correlation of Refrigerant Mass Flow Rate Through Adiabatic Capillary Tubes using Artificial Neural Network”, International Journal of Refrigeration, Vol. 28, pp. 506-514.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Tosun Bu kişi benim

Kevser Dincer

Yayımlanma Tarihi 1 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 3

Kaynak Göster

APA Tosun, M., & Dincer, K. (2018). DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 6(3), 461-477. https://doi.org/10.15317/Scitech.2018.145
AMA Tosun M, Dincer K. DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK. sujest. Eylül 2018;6(3):461-477. doi:10.15317/Scitech.2018.145
Chicago Tosun, Mustafa, ve Kevser Dincer. “DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6, sy. 3 (Eylül 2018): 461-77. https://doi.org/10.15317/Scitech.2018.145.
EndNote Tosun M, Dincer K (01 Eylül 2018) DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6 3 461–477.
IEEE M. Tosun ve K. Dincer, “DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK”, sujest, c. 6, sy. 3, ss. 461–477, 2018, doi: 10.15317/Scitech.2018.145.
ISNAD Tosun, Mustafa - Dincer, Kevser. “DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6/3 (Eylül 2018), 461-477. https://doi.org/10.15317/Scitech.2018.145.
JAMA Tosun M, Dincer K. DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK. sujest. 2018;6:461–477.
MLA Tosun, Mustafa ve Kevser Dincer. “DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 6, sy. 3, 2018, ss. 461-77, doi:10.15317/Scitech.2018.145.
Vancouver Tosun M, Dincer K. DETERMINATION OF SOUND TRANSMISSION LOSS IN LIGHTWEIGHT CONCRETE WALLS AND MODELING ARTIFICIAL NEURAL NETWORK. sujest. 2018;6(3):461-77.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz