Araştırma Makalesi
BibTex RIS Kaynak Göster

Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis'in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı

Yıl 2020, , 23 - 33, 30.06.2020
https://doi.org/10.31019/tbmd.774430

Öz

Çimlerde Fusarium cerealis'in neden olduğu kök ve kökboğazı çürüklüğü Türkiye'nin birçok bölgesindeki çim alanlarındaki önemli hastalıklardan biridir. Bu çalışmada, F. cerealis’in biyolojik mücadelesinde, domates rizosferinden ve hıyar yapraklarından elde edilen beş bakteri izolatının (Stenotrophomonas rhizophila 88bfp, Pseudomonas putida 166fp, Pseudomonas putida 88cfp, Paenibacillus sp. 215b ve Bacillus cereus 44) etkinliği iklim odası koşullarında tohum inokulasyonu (108 hücre/ml) yoluyla araştırılmıştır. Sonuçlar, S. hizophila 88bfp ve Paenibacillus sp. 215b bakteri izolatlarının çimde kök ve kökboğazı çürüklüğü simptom gelişimini, kontrol bitkilerine kıyasla sırasıyla % 85,25 ve % 75,77 oranında azalttığını göstermiştir. P. putida 88cfp ve P. putida 166fp uygulanan denemelerde bu değer sırasıyla % 58.69 ve% 56,72 olarak tespit edilmiştir. En düşük etki B. cereus 44 uygulamasında, kontrolle kıyaslandığında % 32.13 olarak hesaplanmıştır. Bu çalışma sonucunda, iki yerli antagonistik bakteri S. rhizophila 88bfp ve Paenibacillus. sp. 215b’in Türkiye'de çimlerdeki F. cerealis'in neden olduğu kök ve kökboğazı çürüğünün biyolojik mücadelesinde ümit var olduğu bulunmuştur.

Kaynakça

  • Aşkın A. & Y. Z. Katırcıoğlu 2009. The effect of fluorescent Pseudomonas on damping-off of tomato seedlings caused by Pythium deliense. Plant Protection Bulletin, 49: 169-182.
  • Aşkın A. & S. Ozan 2013. Investigation of Bacillus spp. against Pseudoperonspora cubensis causing doawny mildev in cucumber in Middle Anatolia. Plant Protection Products and Machines Congress, Antalya.
  • Becker I. O. & F. J. Schwinn 1993. Control of soil-borne pathogens with living bacteria and fungi status and outlook. Pesticide Science, 37: 355-363.
  • Behrendt U., T. Muller & W. Seyfarth 1997. The influence of extensification in grassland management on the populations of micro-organisms in the phyllosphere of grass. Microbiological Research, 152: 75-85.
  • Cawoy H., W. Bettiol, P. Fickers & M. Ongena 2011. Bacillus-based biological control of plant diseases. In: Stoytcheva M, editor. Pesticides in the modern world: pesticides use and management. InTech; Rijeka, Croatia.
  • Chai B., S. B. Maqbool, R. K. Hajela, D., Green, Jr, J. M., Vargas, D. Warkentin, R. Sabzikar & M. B. Sticklen 2002. Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Science, 163: 183-193.
  • Coelho M. R. R., I. von der Weid, V. Zahner & L. Seldin 2003. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction–restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiology Letters. 222: 243-250.
  • Cook R. I. 1993. Making greater use of introduced micro-organisms for biological control of plant pathogens. Annual Review of Phytopathology,3: 53-80.
  • Cronin D., Y. MoBnne-Loccoz, A. Fenton, C. Dunne, D. N. Dowling & F. O'Gara 1997. Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonas strain F113 with the potato cyst nematode Globodera rostochiensis. Applied Environmental Microbioogy, 63: 1357-1361.
  • Crowley D.C., J. J. Moenne-Loccoz, Y. Dowling, D. N., F. J. de Bruijn & F. O’Gara 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143: 3921-3931
  • Cuppels D. A., J. Higham & J. A. Traquair 2013. Efficacy of selected streptomycetes and a streptomycete + pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control, 67: 361-372.
  • Droby S. 2006. Improving quality and safety of fresh fruit and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulturae, 709:45-52. Dunne C., I. Delany, A. Fenton, S. Lohrke, Y. MoBnne-Loccoz & F. O'Gara 1996. The biotechnology and application of Pseudomonas inoculants for the biocontrol of phytopathogens. In Biology of plant-Microbe Interactions, pp. 441-448.
  • Dunne C., J. J. Crowley, Y. Moenne-Loccoz, D. N. Dowling, F. J. de Bruijn & F. O’Gara 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921-3931.
  • Giesler L. J. & G. Y. Yuen 1998. Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Protection, 17: 509-513.
  • Hagemann M., , D. Hasse & G. Berg 2006. Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Archives of Microbiology, 185: 449-458.
  • Ichielevich-Auster M., B. Sneh, Y. Koltin, I. Barash 1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica 13:103-112.
  • Ippolito A. & F. Nigro 2000. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19,: 715–723. Juhnke M. E. & E. O. Des Jardin 1989. Selective medium for isolation of Xanthomonas maltophilia from soil and rhizophere environments. Applied Environmental Microbiology, 55: 747-750.
  • Kai M., U. Effmert, G. Berg & B. Piechulla 2007. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187: 351–360.
  • Karman M. (1971). Bitki koruma araştırmalarında genel bilgiler, Denemelerin kuruluşu ve değerlendirme esasları. Bornova-İzmir, 279s.
  • Keel C. & G. Defago 1997. Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In Multitrophic Interactions in Terrestrial Systems, pp. 2746. Edited by A. C. Gange & V. K. Brown. Oxford: Blackwell Scientific Publications.
  • Khan Z., S.G. Kim, Y.H. Jeon, H.U. Khan, S.H. Son & Y.H. Kim 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technolog,. 99: 3016-3023.
  • Khan N., A. Mishra, & C. S Nautiyal 2012. Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62: 65–74.
  • Kilic-Ekici O. & G. Y. Yuen 2003. Induced resistance as a mechanism of biological control by lysobacter enzymogenes strain C3. Phytopathology. 93(9): 1103-1110.
  • Kloepper J. W. & M. N. Schroth 1978). Plant growth-promoting rhizobacteria on radishes. In Proceedings of the IVth International Conference on Plant Pathogenic Bacteria, 2, 879–882 (Station de Pathologie Végétale et Phytobactériologie, INRA, Angers, France,)
  • Kobayashi D. Y., M. Guglielmoni & B. B. Clarke 1995. Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biology and Biochemistry. 27: 1479-1487.
  • Kobayashi D. Y., J. D. Palumbo & M. A. Holtman 1999. Potential for use of Stenotrophomonas maltophilia and a related bacterial species for the control of soilborne turfgrass diseases. ACS Symposium Series, 743: 353-362.
  • Lane D. J. 1991. 16S/23S rRNA Sequencing In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA; pp. 115-175.
  • Larsen J., P. Cornejo, & J. M. Barea 2009. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41: 286-292.
  • Lo C. T., E. B. Nelson & G. E. Harman 1996. Biological control of turfgrass diseases with a rhizosphere competent strain of Trichoderma harzianum. Plant disease, 80 (7): 736-742.
  • Minkwitz A. & G. Berg 2001. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology, 39: 139-145.
  • Naing K. W., M. Anees, X. H. Nguyen, Y. S. Lee, S. W Jeon., S. J. Kim, M. H. Kim & K.Y. Kim 2014. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38. Journal Phytopathogy, 162: 367-376.
  • Nelson E. B. 1992. Biological control of turfgrass diseases. Information Bulletin 220. A Cornell Cooperative Extention Publication. Pp.1-12.
  • Nelson E. B. & C. M. Craft 1991. Identification and comparative pathogenicity of Pythium spp. from roots and crowns of turfgrsses exhibiting symptoms of root rot. Phytopathology, 81: 1529-1536.
  • Palleroni N. J., & J. F. Bradbury 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International Journal of Systematic Bacteriolog: 43, 606-609.
  • Papavizas G. C. & C. B. Davey 1962. Activity of Rhizoctonia in soil as affected by carbon dioxide. Phytopathology, 52: 759-766.
  • Poor E. M. J. & S. Riahinia 2017. Identification of Fusarium species ısolated from turfgrass in Qom Province, Iran: A Case Study. International Journal of Agriculture and Biosciences, 6(2): 92-96.
  • Raza W., K. Makeen, Y. Wang, Y. Xu, & S. Qirong 2011. Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21. Bioresource Technology, 102: 6095-6103.
  • Ribbeck-Busch K., A. Roder, D. Hasse, W. de Boer, J.L Martínez, M. Hagemann, & G. Berg 2005. A molecular biological protocolto distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila. Environmental Microbiology, 7: 1853-1858.
  • Romanenko L. A., M. Uchino, N. Tanaka, G. M. Frolova, N. N. Slinkina & V. V. Mikhailov 2008. Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep‐sea invertebrates. Archives of Microbiology, 189: 337–344.
  • Singleton P. W., P. L. Woomer, J. E. Thies, P. L. Nakao & B. B. Bohlool 1991. Ni1TAL Project, Universityof Hawaii, Paia.
  • Smiley R. W, P. H. Dernoeden & B. B. Claeke 1992. Compendium of Turfgrass Diseases. 2nd edition, APS Press. St Paul, USA.
  • Smiley R. W. & D. C. Thompson 1985. Soil and atmospheric moistures associated with Fusarium crown rot and foliar blight of Poa pratensis. Plant Disease, 69: 294-297.
  • Smith J. D., N. Jackson, & A. R. Woolhouse 1989. Fungal diseases of amenity turfgrasses. 3rd edition E and F, Spon, London.
  • Thompson D. C., B. B Clarke & D. Y. Kobayashi 1996. Evaluation of bacterial antagonists for reduction summer patch symptoms in Kentucky bluegrass. Plant Disease, 80(8): 856-862.
  • Timmusk A., B. Nicander, U. Granhall & E. Tillberg 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry, 31: 1847-1852.
  • Ünal F., S. Tülek, A. F. Yıldırım, İ. Kurbetli, Ö. Öztürk, Y. Akıncı, S. Kaymak, E. Koca & F. S. Dolar 2016. Türkiye Çim Alanlarında Zarar Oluşturan Fusarium Türleri ve Virülenslikleri. VI. Bitki Koruma Kongresi Bildirileri, Konya, 497s.
  • Wolf A., A. Fritze, M. Hagemann & G. Berg 2002. Stenotrophomonas rhizophila sp. nov., a novel plant‐associated bacterium with antifungal properties. International Journal of Systematic and Evolutionary Microbiology International Journal of Systematic and Evolutionary Microbiology, 52: 1937-1944.
  • Yuen G. Y., M. L. Craing & L. J. Giesler 1994. Biological control of Rhizoctonia solani on tall fescue using fungal antagonists. Plant Disease, 78: 118-123.
  • Zhang Z. & G. Y. Yuen 1997. Chitinolytic properties of Steno- trophomonus maltophiliu strain C3, an antagonist of fungal turfgrass pathogens. Phytopathology, 87: p109.

The Use of Turkish Bacterial Strains for the Biological Control of Fusarium cerealis which Causes Root and Crown Rot in Turfgrass

Yıl 2020, , 23 - 33, 30.06.2020
https://doi.org/10.31019/tbmd.774430

Öz

Root and crown rot of turfgrass caused by Fusarium cerealis is an important disease in many parts of Turkey. The ability of five bacterial strains, namely Stenotrophomonas rhizophila 88bfp, Pseudomonas putida 166fp, Pseudomonas putida 88cfp, Paenibacillus sp. 215b and Bacillus cereus 253e, isolated from the tomato rhizosphere and cucumber leaves to control F. cerealis, was studied with turf grass seed treatment (108 cfu/mL) under growth chamber conditions. S. rhizophila 88bfp and Paenibacillus sp. 215b reduced root and crown rot symptom development in turf grass by up to 85.25% and 75.77%, respectively, when compared to the untreated control plants. In treatments with P. putida 88cfp and P. putida 166fp, these values were 58.69% and 56.72%, respectively. Bacillus cereus 44 had the lowest efficacy of 32.13 %. Two local antagonistic bacteria S. rhizophila 88bfp and Paenibacillus. sp. 215b were found promising candidates for the biocontrol of root and crown rot caused by F. cerealis in turf grass in Turkey.

Kaynakça

  • Aşkın A. & Y. Z. Katırcıoğlu 2009. The effect of fluorescent Pseudomonas on damping-off of tomato seedlings caused by Pythium deliense. Plant Protection Bulletin, 49: 169-182.
  • Aşkın A. & S. Ozan 2013. Investigation of Bacillus spp. against Pseudoperonspora cubensis causing doawny mildev in cucumber in Middle Anatolia. Plant Protection Products and Machines Congress, Antalya.
  • Becker I. O. & F. J. Schwinn 1993. Control of soil-borne pathogens with living bacteria and fungi status and outlook. Pesticide Science, 37: 355-363.
  • Behrendt U., T. Muller & W. Seyfarth 1997. The influence of extensification in grassland management on the populations of micro-organisms in the phyllosphere of grass. Microbiological Research, 152: 75-85.
  • Cawoy H., W. Bettiol, P. Fickers & M. Ongena 2011. Bacillus-based biological control of plant diseases. In: Stoytcheva M, editor. Pesticides in the modern world: pesticides use and management. InTech; Rijeka, Croatia.
  • Chai B., S. B. Maqbool, R. K. Hajela, D., Green, Jr, J. M., Vargas, D. Warkentin, R. Sabzikar & M. B. Sticklen 2002. Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Science, 163: 183-193.
  • Coelho M. R. R., I. von der Weid, V. Zahner & L. Seldin 2003. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction–restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiology Letters. 222: 243-250.
  • Cook R. I. 1993. Making greater use of introduced micro-organisms for biological control of plant pathogens. Annual Review of Phytopathology,3: 53-80.
  • Cronin D., Y. MoBnne-Loccoz, A. Fenton, C. Dunne, D. N. Dowling & F. O'Gara 1997. Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonas strain F113 with the potato cyst nematode Globodera rostochiensis. Applied Environmental Microbioogy, 63: 1357-1361.
  • Crowley D.C., J. J. Moenne-Loccoz, Y. Dowling, D. N., F. J. de Bruijn & F. O’Gara 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology, 143: 3921-3931
  • Cuppels D. A., J. Higham & J. A. Traquair 2013. Efficacy of selected streptomycetes and a streptomycete + pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control, 67: 361-372.
  • Droby S. 2006. Improving quality and safety of fresh fruit and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulturae, 709:45-52. Dunne C., I. Delany, A. Fenton, S. Lohrke, Y. MoBnne-Loccoz & F. O'Gara 1996. The biotechnology and application of Pseudomonas inoculants for the biocontrol of phytopathogens. In Biology of plant-Microbe Interactions, pp. 441-448.
  • Dunne C., J. J. Crowley, Y. Moenne-Loccoz, D. N. Dowling, F. J. de Bruijn & F. O’Gara 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921-3931.
  • Giesler L. J. & G. Y. Yuen 1998. Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Protection, 17: 509-513.
  • Hagemann M., , D. Hasse & G. Berg 2006. Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Archives of Microbiology, 185: 449-458.
  • Ichielevich-Auster M., B. Sneh, Y. Koltin, I. Barash 1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica 13:103-112.
  • Ippolito A. & F. Nigro 2000. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19,: 715–723. Juhnke M. E. & E. O. Des Jardin 1989. Selective medium for isolation of Xanthomonas maltophilia from soil and rhizophere environments. Applied Environmental Microbiology, 55: 747-750.
  • Kai M., U. Effmert, G. Berg & B. Piechulla 2007. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187: 351–360.
  • Karman M. (1971). Bitki koruma araştırmalarında genel bilgiler, Denemelerin kuruluşu ve değerlendirme esasları. Bornova-İzmir, 279s.
  • Keel C. & G. Defago 1997. Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In Multitrophic Interactions in Terrestrial Systems, pp. 2746. Edited by A. C. Gange & V. K. Brown. Oxford: Blackwell Scientific Publications.
  • Khan Z., S.G. Kim, Y.H. Jeon, H.U. Khan, S.H. Son & Y.H. Kim 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technolog,. 99: 3016-3023.
  • Khan N., A. Mishra, & C. S Nautiyal 2012. Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62: 65–74.
  • Kilic-Ekici O. & G. Y. Yuen 2003. Induced resistance as a mechanism of biological control by lysobacter enzymogenes strain C3. Phytopathology. 93(9): 1103-1110.
  • Kloepper J. W. & M. N. Schroth 1978). Plant growth-promoting rhizobacteria on radishes. In Proceedings of the IVth International Conference on Plant Pathogenic Bacteria, 2, 879–882 (Station de Pathologie Végétale et Phytobactériologie, INRA, Angers, France,)
  • Kobayashi D. Y., M. Guglielmoni & B. B. Clarke 1995. Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biology and Biochemistry. 27: 1479-1487.
  • Kobayashi D. Y., J. D. Palumbo & M. A. Holtman 1999. Potential for use of Stenotrophomonas maltophilia and a related bacterial species for the control of soilborne turfgrass diseases. ACS Symposium Series, 743: 353-362.
  • Lane D. J. 1991. 16S/23S rRNA Sequencing In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA; pp. 115-175.
  • Larsen J., P. Cornejo, & J. M. Barea 2009. Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41: 286-292.
  • Lo C. T., E. B. Nelson & G. E. Harman 1996. Biological control of turfgrass diseases with a rhizosphere competent strain of Trichoderma harzianum. Plant disease, 80 (7): 736-742.
  • Minkwitz A. & G. Berg 2001. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology, 39: 139-145.
  • Naing K. W., M. Anees, X. H. Nguyen, Y. S. Lee, S. W Jeon., S. J. Kim, M. H. Kim & K.Y. Kim 2014. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38. Journal Phytopathogy, 162: 367-376.
  • Nelson E. B. 1992. Biological control of turfgrass diseases. Information Bulletin 220. A Cornell Cooperative Extention Publication. Pp.1-12.
  • Nelson E. B. & C. M. Craft 1991. Identification and comparative pathogenicity of Pythium spp. from roots and crowns of turfgrsses exhibiting symptoms of root rot. Phytopathology, 81: 1529-1536.
  • Palleroni N. J., & J. F. Bradbury 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International Journal of Systematic Bacteriolog: 43, 606-609.
  • Papavizas G. C. & C. B. Davey 1962. Activity of Rhizoctonia in soil as affected by carbon dioxide. Phytopathology, 52: 759-766.
  • Poor E. M. J. & S. Riahinia 2017. Identification of Fusarium species ısolated from turfgrass in Qom Province, Iran: A Case Study. International Journal of Agriculture and Biosciences, 6(2): 92-96.
  • Raza W., K. Makeen, Y. Wang, Y. Xu, & S. Qirong 2011. Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21. Bioresource Technology, 102: 6095-6103.
  • Ribbeck-Busch K., A. Roder, D. Hasse, W. de Boer, J.L Martínez, M. Hagemann, & G. Berg 2005. A molecular biological protocolto distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila. Environmental Microbiology, 7: 1853-1858.
  • Romanenko L. A., M. Uchino, N. Tanaka, G. M. Frolova, N. N. Slinkina & V. V. Mikhailov 2008. Occurrence and antagonistic potential of Stenotrophomonas strains isolated from deep‐sea invertebrates. Archives of Microbiology, 189: 337–344.
  • Singleton P. W., P. L. Woomer, J. E. Thies, P. L. Nakao & B. B. Bohlool 1991. Ni1TAL Project, Universityof Hawaii, Paia.
  • Smiley R. W, P. H. Dernoeden & B. B. Claeke 1992. Compendium of Turfgrass Diseases. 2nd edition, APS Press. St Paul, USA.
  • Smiley R. W. & D. C. Thompson 1985. Soil and atmospheric moistures associated with Fusarium crown rot and foliar blight of Poa pratensis. Plant Disease, 69: 294-297.
  • Smith J. D., N. Jackson, & A. R. Woolhouse 1989. Fungal diseases of amenity turfgrasses. 3rd edition E and F, Spon, London.
  • Thompson D. C., B. B Clarke & D. Y. Kobayashi 1996. Evaluation of bacterial antagonists for reduction summer patch symptoms in Kentucky bluegrass. Plant Disease, 80(8): 856-862.
  • Timmusk A., B. Nicander, U. Granhall & E. Tillberg 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry, 31: 1847-1852.
  • Ünal F., S. Tülek, A. F. Yıldırım, İ. Kurbetli, Ö. Öztürk, Y. Akıncı, S. Kaymak, E. Koca & F. S. Dolar 2016. Türkiye Çim Alanlarında Zarar Oluşturan Fusarium Türleri ve Virülenslikleri. VI. Bitki Koruma Kongresi Bildirileri, Konya, 497s.
  • Wolf A., A. Fritze, M. Hagemann & G. Berg 2002. Stenotrophomonas rhizophila sp. nov., a novel plant‐associated bacterium with antifungal properties. International Journal of Systematic and Evolutionary Microbiology International Journal of Systematic and Evolutionary Microbiology, 52: 1937-1944.
  • Yuen G. Y., M. L. Craing & L. J. Giesler 1994. Biological control of Rhizoctonia solani on tall fescue using fungal antagonists. Plant Disease, 78: 118-123.
  • Zhang Z. & G. Y. Yuen 1997. Chitinolytic properties of Steno- trophomonus maltophiliu strain C3, an antagonist of fungal turfgrass pathogens. Phytopathology, 87: p109.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Kabul Edilen Makaleler
Yazarlar

Ayşe Şenocak Bu kişi benim

Filiz Ünal Bu kişi benim

Mesut Yıldırır Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 12 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Şenocak, A., Ünal, F., & Yıldırır, M. (2020). Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı. Türkiye Biyolojik Mücadele Dergisi, 11(1), 23-33. https://doi.org/10.31019/tbmd.774430
AMA Şenocak A, Ünal F, Yıldırır M. Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı. Türk. biyo. müc. derg. Haziran 2020;11(1):23-33. doi:10.31019/tbmd.774430
Chicago Şenocak, Ayşe, Filiz Ünal, ve Mesut Yıldırır. “Çimlerde Kök Ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı”. Türkiye Biyolojik Mücadele Dergisi 11, sy. 1 (Haziran 2020): 23-33. https://doi.org/10.31019/tbmd.774430.
EndNote Şenocak A, Ünal F, Yıldırır M (01 Haziran 2020) Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı. Türkiye Biyolojik Mücadele Dergisi 11 1 23–33.
IEEE A. Şenocak, F. Ünal, ve M. Yıldırır, “Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı”, Türk. biyo. müc. derg, c. 11, sy. 1, ss. 23–33, 2020, doi: 10.31019/tbmd.774430.
ISNAD Şenocak, Ayşe vd. “Çimlerde Kök Ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı”. Türkiye Biyolojik Mücadele Dergisi 11/1 (Haziran 2020), 23-33. https://doi.org/10.31019/tbmd.774430.
JAMA Şenocak A, Ünal F, Yıldırır M. Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı. Türk. biyo. müc. derg. 2020;11:23–33.
MLA Şenocak, Ayşe vd. “Çimlerde Kök Ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı”. Türkiye Biyolojik Mücadele Dergisi, c. 11, sy. 1, 2020, ss. 23-33, doi:10.31019/tbmd.774430.
Vancouver Şenocak A, Ünal F, Yıldırır M. Çimlerde Kök ve Kökboğazı Çürüklüğüne Neden Olan Fusarium cerealis’in Biyolojik Mücadelesinde Yerli Bakteriyel izolatların Kullanımı. Türk. biyo. müc. derg. 2020;11(1):23-3.