Derleme
PDF EndNote BibTex Kaynak Göster

Sputtered 2D transition metal dichalcogenides: from growth to device applications

Yıl 2021, Cilt 45, Sayı 3, 131 - 147, 28.06.2021

Öz

Starting from graphene, 2D layered materials family has been recently set up more than 100 different materials with variety of different class of materials such as semiconductors, metals, semimetals, superconductors. Among these materials, 2D semiconductors have found especial importance in the state of the art device applications compared to that of the current conventional devices such as (which material based for example Si based) field effect transistors (FETs) and photodetectors during the last two decades. This high potential in solid state devices is mostly revealed by the transition metal dichalcogenides (TMDCs) semiconductor materials such as MoS2 , WS2 , MoSe2 and WSe2 . Therefore, many different methods and approaches have been developed to grow or obtain so far in order to make use them in solid state devices, which is a great challenge in large area applications. Although there are intensively studied methods such as chemical vapor deposition (CVD), mechanical exfoliation, atomic layer deposition, it is sputtering getting attention day by day due to the simplicity of the growth method together with its reliability, large area growth possibility and repeatability. In this review article, we provide benefits and disadvantages of all the growth methods when growing TMDC materials, then focusing on the sputtering TMDC growth strategies performed. In addition, TMDCs for the FETs and photodetector devices grown by RFMS have been surveyed.

Kaynakça

  • [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 2004; 306 (5696). doi: 10.1126/science.11028962
  • [2] Noorden RV, Maher B, Nuzzo R. The top 100 papers. Nature 2014; 514. doi: 10.1038/514550a3
  • [3] Berkdemir A, Gutierrez HR, Botello-Mendez AR, Perea-Lopez N, Elias AL et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013; 3 (1). doi: 10.1038/srep01755.4
  • [4] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene. Progress in Materials Science 2015; 73. doi: 10.1016/j.pmatsci.2015.02.0025
  • [5] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005; 102 (30): doi: 10.1073/pnas.05028481026
  • [6] Alrefae MA, Kumar A, Pandita P, Candadai A, Bilionis I et al. Process optimization of graphene growth in a roll-to-roll plasma CVD system. Aip Advances 2017; 7 (11): doi: 10.1063/1.49987707
  • [7] Hesjedal T. Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Applied Physics Letters 2011; 98 (13): doi: 10.1063/1.35738668
  • [8] Polsen ES, McNerny DQ, Viswanath B, Pattinson SW, John Hart A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Scientific Reports 2015; 5. doi: 10.1038/srep102579
  • [9] Wang L, Xu X, Zhang L, Qiao R, Wu M et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019; 570 (7759). doi: 10.1038/s41586-019-1226-z10
  • [10] Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao ZJ et al. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Letters 2020; 12 (1): doi: 10.1007/s40820-020-0402-x11
  • [11] Das S, Robinson JA, Dubey M, Terrones H, Terrones M. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annual Review of Materials Research2015; 45 (1). doi: 10.1146/annurev- matsci-070214-02103412
  • [12] Zhang Y, Yao Y, Sendeku MG, Yin L, Zhan X et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Advanced Materials 2019; 31 (41): doi: 10.1002/adma.20190169413
  • [13] Cai Z, Liu B, Zou X, Cheng HM. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chemical Reviews 2018; 118 (13): doi: 10.1021/acs.chemrev.7b0053614
  • [14] Genç M, Sheremet V, Elçi M, Kasapoğlu AE, Altuntaş İ et al. Distributed contact flip chip In- GaN/GaN blue LED; comparison with conventional LEDs. Superlattices and Microstructures 2019; 128. doi: 10.1016/j.spmi.2019.01.00815
  • [15] Akyol F, Nath DN, Gur E, Park PS, Rajan S. N-polar III-nitride green (540 nm) light emitting diode. Japanese Journal of Applied Physics 2011; 50 (5): doi: 10.1143/Jjap.50.05210116
  • [16] GençM, Sheremet V, Altuntaş İ, Demir İ, Gür E et al. PECVD grown SiN photonic crystal micro-domes for the light extraction enhancement of GaN LEDs. Gallium Nitride Materials and Devices XV, Proceedings of SPIE 2020; 11280. doi: 10.1117/12.254720617
  • [17] Kahraman A, Gur E, Aydinli A. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures. Semiconductor Science and Technology 2016; 31 (8): doi: 10.1088/0268-1242/31/8/08501318
  • [18] Chapin JS. Planar Magnetron Sputtering Method and Apparatus. Patent 1974. US Patent No:US3956093A
  • [19] Bräuer G, Szyszka B, Vergöhl M, Bandorf R. Magnetron sputtering – milestones of 30 years. Vacuum 2010; 84 (12): doi: 10.1016/j.vacuum.2009.12.01420
  • [20] Kelly PJ, Arnell RD. Magnetron sputtering: a review of recent developments and applications. Vacuum 2000; 56 (3): doi: Doi 10.1016/S0042-207x(99)00189-X21
  • [21] Musil J. Recent advances in magnetron sputtering technology. Surface & Coatings Technology 1998; 100 (1-3). doi: 10.1016/S0257-8972(97)00633-622
  • [22] Baptista A, Silva F, Porteiro J, Miguez J, Pinto G. Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 2018; 8 (11): doi: 10.3390/coatings811040223
  • [23] Kocak Y. Investigation of growth dynamics of 2-dimensional WS2 layers by sputtering method. PhD dissertation, Atatürk University, , Erzurum, Turkey, 2019.24
  • [24] Jang HY, Nam JH, Yoon J, Kim Y, Park W et al. One-step H2S reactive sputtering for 2D MoS2/Si heterojunction photodetector. Nanotechnology 2020; 31 (22). doi: 10.1088/1361-6528/ab760625
  • [25] Schulte J, Harbauer K, Ellmer K. Toward efficient Cu(In,Ga)Se2solar cells prepared by reactive magnetron co- sputtering from metallic targets in an Ar: H2Se atmosphere. Progress in Photovoltaics: Research and Applications 2015; 23 (12): doi: 10.1002/pip.262226
  • [26] Turgut E, Coban O, Saritas S, Tuzemen S, Yildirim M et al. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Applied Surface Science 2018; 435. doi: 10.1016/j.apsusc.2017.11.13327
  • [27] Baker MA, Gilmore R, Lenardi C,Gissler W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Applied Surface Science 1999; 150 (1-4). doi: 10.1016/S0169-4332(99)00253-628
  • [28] Muratore C, Voevodin AA, Glavin NR. Physical vapor deposition of 2D Van der Waals materials: a review. Thin Solid Films 2019; 688. doi: 10.1016/j.tsf.2019.13750029
  • [29] Samassekou H, Alkabsh A, Wasala M, Eaton M, Walber A et al. Viable route towards large-area 2D MoS2using magnetron sputtering. 2D Materials 2017; 4 (2): doi: 10.1088/2053-1583/aa529030
  • [30] Hong J, Hu Z, Probert M, Li K, Lv D et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communication 2015; 6. doi: 10.1038/ncomms729331
  • [31] Moser J, Levy F. Random stacking in MoS2_x sputtered thin films. Thin Solid Films 1994; 240. doi: 10.1016/0040- 6090(94)90693-932
  • [32] Kocak Y, Gur E. Growth control of WS2: from 2D layer by layer to 3D vertical standing nanowalls. ACS Applied Materials & Interfaces 2020; 12 (13): doi: 10.1021/acsami.9b1875933
  • [33] Li N, Liu Z-T, Feng L-P, Su J, Li Dp et al. Effect of substrate temperature on the electrical characteristics of MoSe x thin films and back-gated MoSe x transistors. Journal of Alloys and Compounds 2015; 623. doi: 10.1016/j.jallcom.2014.10.10734
  • [34] Muratore C, Hu JJ, Wang B, Haque MA, Bultman JE et al. Continuous ultra-thin MoS2 films grown by low- temperature physical vapor deposition. Applied Physics Letters 2014; 104 (26): doi: 10.1063/1.488539135
  • [35] Gao B, Du XY, Ma YM, Li YX, Li YH et al. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Applied Catalysis B-Environmental 2020; 263. doi: 10.1016/j.apcatb.2019.11775036
  • [36] Guo ZL, Wei AX, Zhao Y, Tao LL, Yang YB et al. Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties. Applied Physics Letters 2019; 114 (15): doi: 10.1063/1.508745637
  • [37] KoçakY, Akaltun Y, Gür E. Magnetron sputtered WS2; optical and structural analysis. Journal of Physics: Conference Series 2016; 707. doi: 10.1088/1742-6596/707/1/01202838
  • [38] Campbell PM, Perini CJ, Chiu J, Gupta A, Ray HS et al. Plasma-assisted synthesis of MoS2. 2D Materials 2018; 5 (1): doi: 10.1088/2053-1583/aa8c9639
  • [39] Tao J, Chai J, Lu X, Wong LM, Wong TI et al. Growth of wafer-scale MoS 2 monolayer by magnetron sputtering. Nanoscale 2015; 7(6): 40.
  • [40] Ling ZP, Yang R, Chai JW, Wang SJ, Leong WS et al. Large-scale two-dimensional MoS(2) photodetectors by magnetron sputtering. Optics Express 2015; 23 (10). doi: 10.1364/OE.23.01358041
  • [41] Rigi VJC, Jayaraj MK, Saji KJ. Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2. Applied Surface Science 2020; 529. doi: 10.1016/j.apsusc.2020.14715842
  • [42] Wu CR, Chang XR, Wu CH, Lin SY. The growth mechanism of transition metal dichalcogenides by using sulfuriza- tion of pre-deposited transition metals and the 2D crystal hetero-structure establishment. Scientific Reports 2017; 7. doi: 10.1038/srep4214643
  • [43] Choudhary N, Park J, Hwang JY, Choi W. Growth of large-scale and thickness-modulated MoS(2) nanosheets. ACS Applied Materials & Interfaces 2014; 6 (23). doi: 10.1021/am506198b44
  • [44] Jung Y, Shen J, Liu Y, Woods JM, Sun Y et al. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Letters 2014; 14 (12). doi: 10.1021/nl502570f45
  • [45] Woods JM, Jung Y, Xie Y, Liu W, Liu Y et al. One-step synthesis of MoS(2)/WS(2) layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 2016; 10 (2). doi: 10.1021/ac- snano.5b0612646
  • [46] Liu YJ, Ou CY, Lu CH. Effects of Mo films prepared via different sputtering conditions on the formation of MoSe2 during selenization. Journal of Alloys and Compounds 2018; 747. doi: 10.1016/j.jallcom.2018.02.23647
  • [47] Lin H, Zhu Q, Shu D, Lin D, Xu J et al. Growth of environmentally stable transition metal selenide films. Nature Materials 2019; 18 (6). doi: 10.1038/s41563-019-0321-848
  • [48] Kim Y, Kim AR, Zhao G, Choi SY, Kang SC et al. Wafer-scale integration of highly uniform and scalable MoS2 transistors. ACS Applied Materials & Interfaces 2017; 9 (42). doi: 10.1021/acsami.7b1067649
  • [49] Hussain S, Shehzad MA, Vikraman D, Khan MF, Singh J et al. Synthesis and characterization of large-area and continuous MoS 2 atomic layers by RF magnetron sputtering. Nanoscale 2016; 8 (7). doi: 10.1039/c5nr09032f50
  • [50] Hussain S, Khan MF, Shehzad MA, Vikraman D, Iqbal MZ et al. Layer-modulated, wafer scale and continuous ultra-thin WS2 films grown by RF sputtering via post-deposition annealing. Journal of Materials Chemistry C 2016; 4 (33). doi: 10.1039/c6tc01954d51
  • [51] Huang JH, Chen HH, Liu PS, Lu LS, Wu CT et al. Large-area few-layer MoS2 deposited by sputtering. Materials Research Express 2016; 3 (6). doi: 10.1088/2053-1591/3/6/06500752
  • [52] Zhong W, Deng S, Wang K, Li G, Li G et al. Feasible route for a large area few-layer MoS(2) with magnetron sputtering. Nanomaterials 2018; 8 (8). doi: 10.3390/nano808059053
  • [53] Kim BH, Gu HH, Yoon YJ. Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Materials 2018; 5 (4). doi: 10.1088/2053-1583/aadef854
  • [54] Kaindl R, Bayer BC, Resel R, Muller T, Skakalova V et al. Growth, structure and stability of sputter-deposited MoS2 thin films. Beilstein Journal of Nanotechnology 2017; 8. doi: 10.3762/bjnano.8.11355
  • [55] Altuntas I, Demir I, Kasapoglu AE, Mobtakeri S, Gur E et al. The effects of two-stage HT-GaN growth with different V/III ratios during 3D-2D transition. Journal of Physics D-Applied Physics 2018; 51 (3). doi: 10.1088/1361- 6463/aa9bd656
  • [56] Tekmen S, Gur E, Asil H, Cinar K, Coskun C et al. Structural, optical, and electrical properties of n- ZnO/p-GaAs heterojunction. Physica Status Solidi A-Applications and Materials Science 2010; 207 (6). doi: 10.1002/pssa.20092548857
  • [57] Gür E, Zhang Z, Krishnamoorthy S, Rajan S, Ringel SA. Detailed characterization of deep level defects in InGaN Schottky diodes by optical and thermal deep level spectroscopies. Applied Physics Letters 2011; 99 (9). doi: 10.1063/1.363167858
  • [58] Demir I, Kocak Y, Kasapoglu AE, Razeghi M, Gur E et al. AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn. Semiconductor Science and Technology 2019; 34 (7). doi: 10.1088/1361-6641/ab278259
  • [59] Muratore C, Voevodin AA. Control of molybdenum disulfide basal plane orientation during coating growth in pulsed magnetron sputtering discharges. Thin Solid Films 2009; 517 (19). doi: 10.1016/j.tsf.2009.01.19060
  • [60] Moser J, Lévy F. Growth mechanisms and near-interface structure in relation to orientation of MoS2 sputtered thin films. Journal of Materials Research 1992; 7 (3). doi: 10.1557/jmr.1992.073461
  • [61] Li H, Wu H, Yuan S, Qian H. Synthesis and characterization of vertically standing MoS2 nanosheets. Scientific Reports 2016; 6. doi: 10.1038/srep2117162
  • [62] Qian Q, Lei J, Wei J, Zhang Z, Tang G et al. 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. 2D Materials and Applications 2019; 3 (1). doi: 10.1038/s41699-019-0106-663
  • [63] Jeong J, Yoon J-S, Lee S, Baek R-H. Comprehensive analysis of source and drain recess depth variations on silicon nanosheet FETs for sub 5-nm node SoC application. IEEE Access 2020; 8. doi: 10.1109/access.2020.297501764
  • [64] Wang F, Wang Z, Jiang C, Yin L, Cheng R et al. Progress on electronic and optoelectronic devices of 2D layered semiconducting materials. Small 2017; 13 (35). doi: 10.1002/smll.201604298.65
  • [65] Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nature Reviews Materials 2016; 1 (11). doi: 10.1038/natrevmats2016.5266
  • [66] Sirota B, Glavin N, Voevodin AA. Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors. Vacuum 2019; 160. doi: 10.1016/j.vacuum.2018.10.07767
  • [67] Tyagi S, Kumar A, Kumar M, Singh BP. Large area vertical aligned MoS2 layers toward the application of thin film transistor. Materials Letters 2019; 250. doi: 10.1016/j.matlet.2019.04.11768
  • [68] Choudhary N, Park J, Hwang JY, Choi W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Applied Materials & Interfaces 2014; 6 (23). doi: 10.1021/am506198b69
  • [69] Hussain S, Singh J, Vikraman D, Singh AK, Iqbal MZ et al. Large-area, continuous and high electrical performances of bilayer to few layers MoS 2 fabricated by RF sputtering via post-deposition annealing method. Scientific Reports 2016; 6 (1). doi: 10.1038/srep3079170
  • [70] Orofeo CM, Suzuki S, Sekine Y, Hibino H. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfur- ization of thin metal films. Applied Physics Letters 2014; 105 (8). doi: 10.1063/1.489397871
  • [71] Hussain S, Khan MF, Shehzad MA, Vikraman D, Iqbal MZ et al. Layer-modulated, wafer scale and continuous ultra-thin WS 2 films grown by RF sputtering via post-deposition annealing. Journal of Materials Chemistry C 2016; 4 (33). doi: 10.1039/c6tc01954d72
  • [72] Acar M, Mobtakeri S, Efeoglu H, Ertugrul M, Gur E. Single-step, large-area, variable thickness sputtered WS2 film-based field effect transistors. Ceramics International 2020; 46 (17). doi: 10.1016/j.ceramint.2020.07.16173
  • [73] Liu H, Hussain S, Ali A, Naqvi BA, Vikraman D et al. A vertical WSe2–MoSe2 p–n heterostructure with tunable gate rectification. RSC Advances 2018; 8 (45). doi: 10.1039/c8ra03398f74
  • [74] Koperski M, Molas MR, Arora A, Nogajewski K, Slobodeniuk AO et al. Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics 2017; 6 (6). doi: 10.1515/nanoph-2016- 016575
  • [75] Kwak JY. Absorption coefficient estimation of thin MoS2 film using attenuation of silicon substrate Raman signal. Results in Physics 2019; 13. doi: 10.1016/j.rinp.2019.10220276
  • [76] Wang L, Jie J, Shao Z, Zhang Q, Zhang X et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Advanced Functional Materials 2015; 25 (19). doi: 10.1038/s41586-019-1226-z77
  • [77] Kim H-S, Kumar MD, Kim J, Lim D. Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application. Sensors and Actuators A: Physical 2018; 269. doi: 0.1016/j.sna.2017.11.05078
  • [78] Hao L, Gao W, Liu Y, Liu Y, Han Z et al. Self-powered broadband, high-detectivity and ultrafast pho- todetectors based on Pd-MoS 2/Si heterojunctions. Physical Chemistry Chemical Physics 2016; 18 (2). doi: 10.1039/c5cp05642j79
  • [79] Kashid RV, Late DJ, Chou SS, Huang YK, De M et al. Enhanced field-emission behavior of layered mos2 sheets. Small 2013; 9 (16). doi:10.1002/smll.20130000280
  • [80] Huang Z, Zhang T, Liu J, Zhang L, Jin Y et al. Amorphous MoS2 photodetector with ultra-broadband response. ACS Applied Electronic Materials 2019; 1 (7). doi: 10.1021/acsaelm.9b0024781
  • [81] Zeng L, Tao L, Tang C, Zhou B, Long H et al. High-responsivity UV-vis photodetector based on transferable WS 2 film deposited by magnetron sputtering. Scientific Reports 2016; 6 (1). doi: 10.1038/srep2034382
  • [82] Kim BH, Gu HH, Yoon YJ. Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Materials 2018; 5 (4). doi: 10.1088/2053-1583/aadef883
  • [83] Kim BH, Yoon H, Kwon SH, Kim DW,Yoon YJ. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 2021; 184. doi: 10.1016/j.vacuum.2020.109950

Yıl 2021, Cilt 45, Sayı 3, 131 - 147, 28.06.2021

Öz

Kaynakça

  • [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 2004; 306 (5696). doi: 10.1126/science.11028962
  • [2] Noorden RV, Maher B, Nuzzo R. The top 100 papers. Nature 2014; 514. doi: 10.1038/514550a3
  • [3] Berkdemir A, Gutierrez HR, Botello-Mendez AR, Perea-Lopez N, Elias AL et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 2013; 3 (1). doi: 10.1038/srep01755.4
  • [4] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene. Progress in Materials Science 2015; 73. doi: 10.1016/j.pmatsci.2015.02.0025
  • [5] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005; 102 (30): doi: 10.1073/pnas.05028481026
  • [6] Alrefae MA, Kumar A, Pandita P, Candadai A, Bilionis I et al. Process optimization of graphene growth in a roll-to-roll plasma CVD system. Aip Advances 2017; 7 (11): doi: 10.1063/1.49987707
  • [7] Hesjedal T. Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Applied Physics Letters 2011; 98 (13): doi: 10.1063/1.35738668
  • [8] Polsen ES, McNerny DQ, Viswanath B, Pattinson SW, John Hart A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Scientific Reports 2015; 5. doi: 10.1038/srep102579
  • [9] Wang L, Xu X, Zhang L, Qiao R, Wu M et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019; 570 (7759). doi: 10.1038/s41586-019-1226-z10
  • [10] Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao ZJ et al. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Letters 2020; 12 (1): doi: 10.1007/s40820-020-0402-x11
  • [11] Das S, Robinson JA, Dubey M, Terrones H, Terrones M. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annual Review of Materials Research2015; 45 (1). doi: 10.1146/annurev- matsci-070214-02103412
  • [12] Zhang Y, Yao Y, Sendeku MG, Yin L, Zhan X et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Advanced Materials 2019; 31 (41): doi: 10.1002/adma.20190169413
  • [13] Cai Z, Liu B, Zou X, Cheng HM. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chemical Reviews 2018; 118 (13): doi: 10.1021/acs.chemrev.7b0053614
  • [14] Genç M, Sheremet V, Elçi M, Kasapoğlu AE, Altuntaş İ et al. Distributed contact flip chip In- GaN/GaN blue LED; comparison with conventional LEDs. Superlattices and Microstructures 2019; 128. doi: 10.1016/j.spmi.2019.01.00815
  • [15] Akyol F, Nath DN, Gur E, Park PS, Rajan S. N-polar III-nitride green (540 nm) light emitting diode. Japanese Journal of Applied Physics 2011; 50 (5): doi: 10.1143/Jjap.50.05210116
  • [16] GençM, Sheremet V, Altuntaş İ, Demir İ, Gür E et al. PECVD grown SiN photonic crystal micro-domes for the light extraction enhancement of GaN LEDs. Gallium Nitride Materials and Devices XV, Proceedings of SPIE 2020; 11280. doi: 10.1117/12.254720617
  • [17] Kahraman A, Gur E, Aydinli A. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures. Semiconductor Science and Technology 2016; 31 (8): doi: 10.1088/0268-1242/31/8/08501318
  • [18] Chapin JS. Planar Magnetron Sputtering Method and Apparatus. Patent 1974. US Patent No:US3956093A
  • [19] Bräuer G, Szyszka B, Vergöhl M, Bandorf R. Magnetron sputtering – milestones of 30 years. Vacuum 2010; 84 (12): doi: 10.1016/j.vacuum.2009.12.01420
  • [20] Kelly PJ, Arnell RD. Magnetron sputtering: a review of recent developments and applications. Vacuum 2000; 56 (3): doi: Doi 10.1016/S0042-207x(99)00189-X21
  • [21] Musil J. Recent advances in magnetron sputtering technology. Surface & Coatings Technology 1998; 100 (1-3). doi: 10.1016/S0257-8972(97)00633-622
  • [22] Baptista A, Silva F, Porteiro J, Miguez J, Pinto G. Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 2018; 8 (11): doi: 10.3390/coatings811040223
  • [23] Kocak Y. Investigation of growth dynamics of 2-dimensional WS2 layers by sputtering method. PhD dissertation, Atatürk University, , Erzurum, Turkey, 2019.24
  • [24] Jang HY, Nam JH, Yoon J, Kim Y, Park W et al. One-step H2S reactive sputtering for 2D MoS2/Si heterojunction photodetector. Nanotechnology 2020; 31 (22). doi: 10.1088/1361-6528/ab760625
  • [25] Schulte J, Harbauer K, Ellmer K. Toward efficient Cu(In,Ga)Se2solar cells prepared by reactive magnetron co- sputtering from metallic targets in an Ar: H2Se atmosphere. Progress in Photovoltaics: Research and Applications 2015; 23 (12): doi: 10.1002/pip.262226
  • [26] Turgut E, Coban O, Saritas S, Tuzemen S, Yildirim M et al. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Applied Surface Science 2018; 435. doi: 10.1016/j.apsusc.2017.11.13327
  • [27] Baker MA, Gilmore R, Lenardi C,Gissler W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Applied Surface Science 1999; 150 (1-4). doi: 10.1016/S0169-4332(99)00253-628
  • [28] Muratore C, Voevodin AA, Glavin NR. Physical vapor deposition of 2D Van der Waals materials: a review. Thin Solid Films 2019; 688. doi: 10.1016/j.tsf.2019.13750029
  • [29] Samassekou H, Alkabsh A, Wasala M, Eaton M, Walber A et al. Viable route towards large-area 2D MoS2using magnetron sputtering. 2D Materials 2017; 4 (2): doi: 10.1088/2053-1583/aa529030
  • [30] Hong J, Hu Z, Probert M, Li K, Lv D et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communication 2015; 6. doi: 10.1038/ncomms729331
  • [31] Moser J, Levy F. Random stacking in MoS2_x sputtered thin films. Thin Solid Films 1994; 240. doi: 10.1016/0040- 6090(94)90693-932
  • [32] Kocak Y, Gur E. Growth control of WS2: from 2D layer by layer to 3D vertical standing nanowalls. ACS Applied Materials & Interfaces 2020; 12 (13): doi: 10.1021/acsami.9b1875933
  • [33] Li N, Liu Z-T, Feng L-P, Su J, Li Dp et al. Effect of substrate temperature on the electrical characteristics of MoSe x thin films and back-gated MoSe x transistors. Journal of Alloys and Compounds 2015; 623. doi: 10.1016/j.jallcom.2014.10.10734
  • [34] Muratore C, Hu JJ, Wang B, Haque MA, Bultman JE et al. Continuous ultra-thin MoS2 films grown by low- temperature physical vapor deposition. Applied Physics Letters 2014; 104 (26): doi: 10.1063/1.488539135
  • [35] Gao B, Du XY, Ma YM, Li YX, Li YH et al. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Applied Catalysis B-Environmental 2020; 263. doi: 10.1016/j.apcatb.2019.11775036
  • [36] Guo ZL, Wei AX, Zhao Y, Tao LL, Yang YB et al. Controllable growth of large-area atomically thin ReS2 films and their thickness-dependent optoelectronic properties. Applied Physics Letters 2019; 114 (15): doi: 10.1063/1.508745637
  • [37] KoçakY, Akaltun Y, Gür E. Magnetron sputtered WS2; optical and structural analysis. Journal of Physics: Conference Series 2016; 707. doi: 10.1088/1742-6596/707/1/01202838
  • [38] Campbell PM, Perini CJ, Chiu J, Gupta A, Ray HS et al. Plasma-assisted synthesis of MoS2. 2D Materials 2018; 5 (1): doi: 10.1088/2053-1583/aa8c9639
  • [39] Tao J, Chai J, Lu X, Wong LM, Wong TI et al. Growth of wafer-scale MoS 2 monolayer by magnetron sputtering. Nanoscale 2015; 7(6): 40.
  • [40] Ling ZP, Yang R, Chai JW, Wang SJ, Leong WS et al. Large-scale two-dimensional MoS(2) photodetectors by magnetron sputtering. Optics Express 2015; 23 (10). doi: 10.1364/OE.23.01358041
  • [41] Rigi VJC, Jayaraj MK, Saji KJ. Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2. Applied Surface Science 2020; 529. doi: 10.1016/j.apsusc.2020.14715842
  • [42] Wu CR, Chang XR, Wu CH, Lin SY. The growth mechanism of transition metal dichalcogenides by using sulfuriza- tion of pre-deposited transition metals and the 2D crystal hetero-structure establishment. Scientific Reports 2017; 7. doi: 10.1038/srep4214643
  • [43] Choudhary N, Park J, Hwang JY, Choi W. Growth of large-scale and thickness-modulated MoS(2) nanosheets. ACS Applied Materials & Interfaces 2014; 6 (23). doi: 10.1021/am506198b44
  • [44] Jung Y, Shen J, Liu Y, Woods JM, Sun Y et al. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Letters 2014; 14 (12). doi: 10.1021/nl502570f45
  • [45] Woods JM, Jung Y, Xie Y, Liu W, Liu Y et al. One-step synthesis of MoS(2)/WS(2) layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 2016; 10 (2). doi: 10.1021/ac- snano.5b0612646
  • [46] Liu YJ, Ou CY, Lu CH. Effects of Mo films prepared via different sputtering conditions on the formation of MoSe2 during selenization. Journal of Alloys and Compounds 2018; 747. doi: 10.1016/j.jallcom.2018.02.23647
  • [47] Lin H, Zhu Q, Shu D, Lin D, Xu J et al. Growth of environmentally stable transition metal selenide films. Nature Materials 2019; 18 (6). doi: 10.1038/s41563-019-0321-848
  • [48] Kim Y, Kim AR, Zhao G, Choi SY, Kang SC et al. Wafer-scale integration of highly uniform and scalable MoS2 transistors. ACS Applied Materials & Interfaces 2017; 9 (42). doi: 10.1021/acsami.7b1067649
  • [49] Hussain S, Shehzad MA, Vikraman D, Khan MF, Singh J et al. Synthesis and characterization of large-area and continuous MoS 2 atomic layers by RF magnetron sputtering. Nanoscale 2016; 8 (7). doi: 10.1039/c5nr09032f50
  • [50] Hussain S, Khan MF, Shehzad MA, Vikraman D, Iqbal MZ et al. Layer-modulated, wafer scale and continuous ultra-thin WS2 films grown by RF sputtering via post-deposition annealing. Journal of Materials Chemistry C 2016; 4 (33). doi: 10.1039/c6tc01954d51
  • [51] Huang JH, Chen HH, Liu PS, Lu LS, Wu CT et al. Large-area few-layer MoS2 deposited by sputtering. Materials Research Express 2016; 3 (6). doi: 10.1088/2053-1591/3/6/06500752
  • [52] Zhong W, Deng S, Wang K, Li G, Li G et al. Feasible route for a large area few-layer MoS(2) with magnetron sputtering. Nanomaterials 2018; 8 (8). doi: 10.3390/nano808059053
  • [53] Kim BH, Gu HH, Yoon YJ. Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Materials 2018; 5 (4). doi: 10.1088/2053-1583/aadef854
  • [54] Kaindl R, Bayer BC, Resel R, Muller T, Skakalova V et al. Growth, structure and stability of sputter-deposited MoS2 thin films. Beilstein Journal of Nanotechnology 2017; 8. doi: 10.3762/bjnano.8.11355
  • [55] Altuntas I, Demir I, Kasapoglu AE, Mobtakeri S, Gur E et al. The effects of two-stage HT-GaN growth with different V/III ratios during 3D-2D transition. Journal of Physics D-Applied Physics 2018; 51 (3). doi: 10.1088/1361- 6463/aa9bd656
  • [56] Tekmen S, Gur E, Asil H, Cinar K, Coskun C et al. Structural, optical, and electrical properties of n- ZnO/p-GaAs heterojunction. Physica Status Solidi A-Applications and Materials Science 2010; 207 (6). doi: 10.1002/pssa.20092548857
  • [57] Gür E, Zhang Z, Krishnamoorthy S, Rajan S, Ringel SA. Detailed characterization of deep level defects in InGaN Schottky diodes by optical and thermal deep level spectroscopies. Applied Physics Letters 2011; 99 (9). doi: 10.1063/1.363167858
  • [58] Demir I, Kocak Y, Kasapoglu AE, Razeghi M, Gur E et al. AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn. Semiconductor Science and Technology 2019; 34 (7). doi: 10.1088/1361-6641/ab278259
  • [59] Muratore C, Voevodin AA. Control of molybdenum disulfide basal plane orientation during coating growth in pulsed magnetron sputtering discharges. Thin Solid Films 2009; 517 (19). doi: 10.1016/j.tsf.2009.01.19060
  • [60] Moser J, Lévy F. Growth mechanisms and near-interface structure in relation to orientation of MoS2 sputtered thin films. Journal of Materials Research 1992; 7 (3). doi: 10.1557/jmr.1992.073461
  • [61] Li H, Wu H, Yuan S, Qian H. Synthesis and characterization of vertically standing MoS2 nanosheets. Scientific Reports 2016; 6. doi: 10.1038/srep2117162
  • [62] Qian Q, Lei J, Wei J, Zhang Z, Tang G et al. 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. 2D Materials and Applications 2019; 3 (1). doi: 10.1038/s41699-019-0106-663
  • [63] Jeong J, Yoon J-S, Lee S, Baek R-H. Comprehensive analysis of source and drain recess depth variations on silicon nanosheet FETs for sub 5-nm node SoC application. IEEE Access 2020; 8. doi: 10.1109/access.2020.297501764
  • [64] Wang F, Wang Z, Jiang C, Yin L, Cheng R et al. Progress on electronic and optoelectronic devices of 2D layered semiconducting materials. Small 2017; 13 (35). doi: 10.1002/smll.201604298.65
  • [65] Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nature Reviews Materials 2016; 1 (11). doi: 10.1038/natrevmats2016.5266
  • [66] Sirota B, Glavin N, Voevodin AA. Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors. Vacuum 2019; 160. doi: 10.1016/j.vacuum.2018.10.07767
  • [67] Tyagi S, Kumar A, Kumar M, Singh BP. Large area vertical aligned MoS2 layers toward the application of thin film transistor. Materials Letters 2019; 250. doi: 10.1016/j.matlet.2019.04.11768
  • [68] Choudhary N, Park J, Hwang JY, Choi W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Applied Materials & Interfaces 2014; 6 (23). doi: 10.1021/am506198b69
  • [69] Hussain S, Singh J, Vikraman D, Singh AK, Iqbal MZ et al. Large-area, continuous and high electrical performances of bilayer to few layers MoS 2 fabricated by RF sputtering via post-deposition annealing method. Scientific Reports 2016; 6 (1). doi: 10.1038/srep3079170
  • [70] Orofeo CM, Suzuki S, Sekine Y, Hibino H. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfur- ization of thin metal films. Applied Physics Letters 2014; 105 (8). doi: 10.1063/1.489397871
  • [71] Hussain S, Khan MF, Shehzad MA, Vikraman D, Iqbal MZ et al. Layer-modulated, wafer scale and continuous ultra-thin WS 2 films grown by RF sputtering via post-deposition annealing. Journal of Materials Chemistry C 2016; 4 (33). doi: 10.1039/c6tc01954d72
  • [72] Acar M, Mobtakeri S, Efeoglu H, Ertugrul M, Gur E. Single-step, large-area, variable thickness sputtered WS2 film-based field effect transistors. Ceramics International 2020; 46 (17). doi: 10.1016/j.ceramint.2020.07.16173
  • [73] Liu H, Hussain S, Ali A, Naqvi BA, Vikraman D et al. A vertical WSe2–MoSe2 p–n heterostructure with tunable gate rectification. RSC Advances 2018; 8 (45). doi: 10.1039/c8ra03398f74
  • [74] Koperski M, Molas MR, Arora A, Nogajewski K, Slobodeniuk AO et al. Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics 2017; 6 (6). doi: 10.1515/nanoph-2016- 016575
  • [75] Kwak JY. Absorption coefficient estimation of thin MoS2 film using attenuation of silicon substrate Raman signal. Results in Physics 2019; 13. doi: 10.1016/j.rinp.2019.10220276
  • [76] Wang L, Jie J, Shao Z, Zhang Q, Zhang X et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Advanced Functional Materials 2015; 25 (19). doi: 10.1038/s41586-019-1226-z77
  • [77] Kim H-S, Kumar MD, Kim J, Lim D. Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application. Sensors and Actuators A: Physical 2018; 269. doi: 0.1016/j.sna.2017.11.05078
  • [78] Hao L, Gao W, Liu Y, Liu Y, Han Z et al. Self-powered broadband, high-detectivity and ultrafast pho- todetectors based on Pd-MoS 2/Si heterojunctions. Physical Chemistry Chemical Physics 2016; 18 (2). doi: 10.1039/c5cp05642j79
  • [79] Kashid RV, Late DJ, Chou SS, Huang YK, De M et al. Enhanced field-emission behavior of layered mos2 sheets. Small 2013; 9 (16). doi:10.1002/smll.20130000280
  • [80] Huang Z, Zhang T, Liu J, Zhang L, Jin Y et al. Amorphous MoS2 photodetector with ultra-broadband response. ACS Applied Electronic Materials 2019; 1 (7). doi: 10.1021/acsaelm.9b0024781
  • [81] Zeng L, Tao L, Tang C, Zhou B, Long H et al. High-responsivity UV-vis photodetector based on transferable WS 2 film deposited by magnetron sputtering. Scientific Reports 2016; 6 (1). doi: 10.1038/srep2034382
  • [82] Kim BH, Gu HH, Yoon YJ. Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Materials 2018; 5 (4). doi: 10.1088/2053-1583/aadef883
  • [83] Kim BH, Yoon H, Kwon SH, Kim DW,Yoon YJ. Direct WS2 photodetector fabrication on a flexible substrate. Vacuum 2021; 184. doi: 10.1016/j.vacuum.2020.109950

Ayrıntılar

Birincil Dil İngilizce
Konular Fizik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Merve ACAR Bu kişi benim
Department of Electrical and Electronics Engineering, Faculty of Engineering, Atatürk University, Erzurum, Turkey
Türkiye


Emre GÜR Bu kişi benim
Department of Physics, Faculty of Science, Atatürk University, Erzurum, Turkey
Türkiye

Yayımlanma Tarihi 28 Haziran 2021
Yayınlandığı Sayı Yıl 2021, Cilt 45, Sayı 3

Kaynak Göster

Bibtex @derleme { tbtkphysics964088, journal = {Turkish Journal of Physics}, issn = {1300-0101}, eissn = {1303-6122}, address = {}, publisher = {TÜBİTAK}, year = {2021}, volume = {45}, number = {3}, pages = {131 - 147}, title = {Sputtered 2D transition metal dichalcogenides: from growth to device applications}, key = {cite}, author = {Acar, Merve and Gür, Emre} }
APA Acar, M. & Gür, E. (2021). Sputtered 2D transition metal dichalcogenides: from growth to device applications . Turkish Journal of Physics , 45 (3) , 131-147 . Retrieved from https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964088
MLA Acar, M. , Gür, E. "Sputtered 2D transition metal dichalcogenides: from growth to device applications" . Turkish Journal of Physics 45 (2021 ): 131-147 <https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964088>
Chicago Acar, M. , Gür, E. "Sputtered 2D transition metal dichalcogenides: from growth to device applications". Turkish Journal of Physics 45 (2021 ): 131-147
RIS TY - JOUR T1 - Sputtered 2D transition metal dichalcogenides: from growth to device applications AU - Merve Acar , Emre Gür Y1 - 2021 PY - 2021 N1 - DO - T2 - Turkish Journal of Physics JF - Journal JO - JOR SP - 131 EP - 147 VL - 45 IS - 3 SN - 1300-0101-1303-6122 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Physics Sputtered 2D transition metal dichalcogenides: from growth to device applications %A Merve Acar , Emre Gür %T Sputtered 2D transition metal dichalcogenides: from growth to device applications %D 2021 %J Turkish Journal of Physics %P 1300-0101-1303-6122 %V 45 %N 3 %R %U
ISNAD Acar, Merve , Gür, Emre . "Sputtered 2D transition metal dichalcogenides: from growth to device applications". Turkish Journal of Physics 45 / 3 (Haziran 2021): 131-147 .
AMA Acar M. , Gür E. Sputtered 2D transition metal dichalcogenides: from growth to device applications. Turkish Journal of Physics. 2021; 45(3): 131-147.
Vancouver Acar M. , Gür E. Sputtered 2D transition metal dichalcogenides: from growth to device applications. Turkish Journal of Physics. 2021; 45(3): 131-147.
IEEE M. Acar ve E. Gür , "Sputtered 2D transition metal dichalcogenides: from growth to device applications", Turkish Journal of Physics, c. 45, sayı. 3, ss. 131-147, Haz. 2021