Araştırma Makalesi
PDF EndNote BibTex Kaynak Göster

The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes

Yıl 2021, Cilt 45, Sayı 3, 148 - 158, 28.06.2021

Öz

Li7 La3 Zr2 O12 (LLZO), lithium lanthanum zirconate is a promising garnet-type solid electrolyte that is being intensively studied for solid-state lithium batteries. The properties of LLZO such as compatibility with the lithium electrode, stability, and ionic conductivity make them to be used in all solid-state batteries. Moreover, lithium ion concentration and distribution, doping different cations, chemical composition, and interaction between different dopants have remarkable effects on the ionic conduction of LLZO material. Herein, we investigate the solid electrolyte, Li6.4 (Ga(1−y) In(y) )0.2 La3 Zr2 O12 (y = 0.05, 0.10, 0.15, 0.20), by probing the influence of indium substitution to gallium sites at the same lithium concentration on the structure and the lithium ion conduction. A conventional solid state route, ball milling was used to synthesize the materials. Crystal structure, morphology, ionic conduction, and local electronic structure were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and X-ray absorption fine structure (XAFS) techniques, respectively. The results revealed that the existence of indium effected the conduction adversely, although made no significant changes on the local structure.

Kaynakça

  • [1] Wu JF, Chen EY, Yu Y, Liu L, Wu Y et al. Gallium-Doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. Acs Applied Materials & Interfaces 2017; 9 (2): 1542-1552. doi: 10.1021/acsami.6b13902
  • [2] Posch P, Lunghammer S, Berendts S, Ganschow S, Redhammer GJ et al. Ion dynamics in Al-Stabilized Li7La3Zr2O12 single crystals - Macroscopic transport and the elementary steps of ion hopping. Energy Storage Materials 2020; 24: 220-228. doi: 10.1016/j.ensm.2019.08.017
  • [3] Rettenwander D, Langer J, Schmidt W, Arrer C, Harris KJ et al. Site occupation of Ga and Al in Stabilized Cubic Li7-3(x plus y)GaxAlyLa3Zr2O12 garnets as deduced from (27) AI and Ga-71 MAS NMR at ultrahigh magnetic fields. Chemistry of Materials 2015; 27 (8):3135-3142. doi: 10.1021/acs.chemmater.5b00684
  • [4] Jalem R, Rushton MJD, Manalastas W, Nakayama M, Kasuga T et al. Effects of Gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chemistry of Materials 2015; 27 (8): 2821-2831. doi: 10.1021/cm5045122
  • [5] Xiang X, Liu Y, Chen F, Yang WY, Yang JB et al. Crystal structure and lithium ionic transport behav- ior of Li site doped Li7La3Zr2O12. Journal of the European Ceramic Society 2020; 40 (8):3065-3071. doi: 10.1016/j.jeurceramsoc.2020.02.054
  • [6] Wagner R, Redhammer GJ, Rettenwander D, Senyshyn A, Schmidt W et al. Crystal structure of garnet-related Li- Ion Conductor Li7-3xGaxLa3Zr2O12: fast li-ıon conduction caused by a different cubic modification?. Chemistry of Materials 2016; 28 (6):1861-1871. doi: 10.1021/acs.chemmater.6b00038
  • [7] Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P et al. DFT Study of the Role of Al3+ in the Fast Ion-Conductor Li7-3xAlx3+La3Zr2O12 Garnet. Chemistry of Materials 2014; 26 (8): 2617-2623. doi: 10.1021/cm5000999
  • [8] Rettenwander D, Geiger CA, Tribus M, Tropper P, Amthauer G. A Synthesis and crystal chemical study of the fast ıon conductor Li7-3xGaxLa3 Zr2O12 with x=0.08 to 0.84. Inorganic Chemistry 2014; 53 (12): 6264-6269. doi: 10.1021/ic500803h
  • [9] Xiang X, Chen F, Shen Q, Zhang LM, Chen CL. Effect of the lithium ion concentration on the lithium ion conductivity of Ga-doped LLZO. Materials Research Express 2019; 6 (8). doi: 10.1088/2053-1591/ab2799
  • [10] Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL. Synthesis and high Li-ion conductiv- ity of Ga-stabilized cubic Li7La3Zr2O12. Materials Chemistry and Physics 2012; 134 (2-3): 571-575. doi: 10.1016/j.matchemphys.2012.03.054
  • [11] Shin DO, Oh K, Kim KM, Park KY, Lee B et al. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Scientific Reports 2015; 5. doi: 10.1038/srep18053
  • [12] Wang C, Lin PP, Gong Y, Liu ZG, Lin TS et al. Co-doping effects of Ba2+ and Ta5+ on the microstructure and ionic conductivity of garnet-type solid state electrolytes. Journal of Alloys and Compounds 2021; 854. doi: 10.1016/j.jallcom.2020.157143
  • [13] Cao Z, Li Y, Su J, Zhao J, Li Y et al. Y and Sb co-doped Li7La3Zr2O12 electrolyte for all solid-state lithium batteries. Ionics 2021. doi: 10.1007/s11581-021-03919-z
  • [14] Dubey BP, Sahoo A, Thangadurai V, Sharma Y. Morphological, dielectric and transport properties of garnet-type Li6.25+yAl0.25La3Zr2-yMnyO12 (y=0, 0.05, 0.1, and 0.2). Solid State Ionics 2010; 351. doi: 10.1016/j.ssi.2020.115339
  • [15] Abrha LH, Hagos TT, Nikodimos Y, Bezabh HK, Berhe GB et al. Dual-doped cubic garnet solid electrolytes with superior air stability. Acs Applied Materials & Interfaces 2020; 12 (23): 25709-25717. doi: 10.1021/acsami.0c01289
  • [16] Karasulu B, Emge SP, Groh MF, Grey CP, Morris AJ. Al/Ga-Doped Li7La3Zr2O12 garnets as li-ıon solid-state battery electrolytes: atomistic ınsights into local coordination environments and their ınfluence on O-17, Al-27, and Ga-71 NMR Spectra. Journal of the American Chemical Society 2020; 142 (6): 3132-3148. doi: 10.1021/jacs.9b12685
  • [17] Zhang YH, Chen F, Tu R, Shen Q, Zhang XL et al. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State Ionics 2016; 284: 53-60. doi: 10.1016/j.ssi.2015.11.014
  • [18] Klysubun W, Tarawarakam P, Sombunchoo P, Klinkhieo S, Chaiprapa J et al. X-ray absorption spectroscopy beamline at the Siam Photon Laboratory. Synchrotron Radiation Instrumentation, Pts 1 and 2 2017; 879:860.
  • [19] Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation 2001; 8: 322-324. doi: 10.1107/S0909049500016964
  • [20] Lutterotti L. Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Crystallographica a-Foundation and Advances 2000; 56: S54-S54. doi: 10.1107/S0108767300021954
  • [21] Paolella A, Zhu W, Bertoni G, Savoie S, Feng ZM et al. Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability. Acs Applied Energy Materials 2020; 3 (4): 3415-3424. doi: 10.1021/ac- saem.9b02401
  • [22] Aktas S, Ozkendir OM, Eker YR, Ates S, Atav U et al. Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials. Journal of Alloys and Compounds 2019; 792:279-285. doi: 10.1016/j.jallcom.2019.04.049
  • [23] Cao ZZ, Wu WW, Li Y, Zhao JJ, He WY et al. Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics 2020; 26 (9): 4247-4256. doi: 10.1007/s11581-020-03580-y
  • [24] Li CL, Liu YF, He J, Brinkman KS. Ga-substituted Li7La3Zr2O12: An investigation based on grain coars- ening in garnet-type lithium ion conductors. Journal of Alloys and Compounds 2017; 695: 3744-3752. doi: 10.1016/j.jallcom.2016.11.277
  • [25] Afyon S, Krumeich F, Rupp JLM. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. Journal of Materials Chemistry A 2015; 3 (36): 18636-18648. doi: 10.1039/c5ta03239c
  • [26] Walter GW. A Review of ımpedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science 1986; 26 (9): 681-703. doi: 10.1016/0010-938x(86)90033-8
  • [27] Haile SM, West DL, Campbell J. The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. Journal of Materials Research 1998; 13 (6): 1576-1595. doi: 10.1557/Jmr.1998.0219
  • [28] Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by ımpedance spectroscopy. Advanced Ma- terials 1990.
  • [29] BrucePG,WestAR.TheAcconductivityofpolycrystallinelisicon,Li2+2xzn1-Xgeo4,andamodelforıntergranular constriction resistances. Journal of the Electrochemical Society 1983; 130 (3): 662-669. doi: 10.1149/1.2119778

Yıl 2021, Cilt 45, Sayı 3, 148 - 158, 28.06.2021

Öz

Kaynakça

  • [1] Wu JF, Chen EY, Yu Y, Liu L, Wu Y et al. Gallium-Doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. Acs Applied Materials & Interfaces 2017; 9 (2): 1542-1552. doi: 10.1021/acsami.6b13902
  • [2] Posch P, Lunghammer S, Berendts S, Ganschow S, Redhammer GJ et al. Ion dynamics in Al-Stabilized Li7La3Zr2O12 single crystals - Macroscopic transport and the elementary steps of ion hopping. Energy Storage Materials 2020; 24: 220-228. doi: 10.1016/j.ensm.2019.08.017
  • [3] Rettenwander D, Langer J, Schmidt W, Arrer C, Harris KJ et al. Site occupation of Ga and Al in Stabilized Cubic Li7-3(x plus y)GaxAlyLa3Zr2O12 garnets as deduced from (27) AI and Ga-71 MAS NMR at ultrahigh magnetic fields. Chemistry of Materials 2015; 27 (8):3135-3142. doi: 10.1021/acs.chemmater.5b00684
  • [4] Jalem R, Rushton MJD, Manalastas W, Nakayama M, Kasuga T et al. Effects of Gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chemistry of Materials 2015; 27 (8): 2821-2831. doi: 10.1021/cm5045122
  • [5] Xiang X, Liu Y, Chen F, Yang WY, Yang JB et al. Crystal structure and lithium ionic transport behav- ior of Li site doped Li7La3Zr2O12. Journal of the European Ceramic Society 2020; 40 (8):3065-3071. doi: 10.1016/j.jeurceramsoc.2020.02.054
  • [6] Wagner R, Redhammer GJ, Rettenwander D, Senyshyn A, Schmidt W et al. Crystal structure of garnet-related Li- Ion Conductor Li7-3xGaxLa3Zr2O12: fast li-ıon conduction caused by a different cubic modification?. Chemistry of Materials 2016; 28 (6):1861-1871. doi: 10.1021/acs.chemmater.6b00038
  • [7] Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P et al. DFT Study of the Role of Al3+ in the Fast Ion-Conductor Li7-3xAlx3+La3Zr2O12 Garnet. Chemistry of Materials 2014; 26 (8): 2617-2623. doi: 10.1021/cm5000999
  • [8] Rettenwander D, Geiger CA, Tribus M, Tropper P, Amthauer G. A Synthesis and crystal chemical study of the fast ıon conductor Li7-3xGaxLa3 Zr2O12 with x=0.08 to 0.84. Inorganic Chemistry 2014; 53 (12): 6264-6269. doi: 10.1021/ic500803h
  • [9] Xiang X, Chen F, Shen Q, Zhang LM, Chen CL. Effect of the lithium ion concentration on the lithium ion conductivity of Ga-doped LLZO. Materials Research Express 2019; 6 (8). doi: 10.1088/2053-1591/ab2799
  • [10] Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL. Synthesis and high Li-ion conductiv- ity of Ga-stabilized cubic Li7La3Zr2O12. Materials Chemistry and Physics 2012; 134 (2-3): 571-575. doi: 10.1016/j.matchemphys.2012.03.054
  • [11] Shin DO, Oh K, Kim KM, Park KY, Lee B et al. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Scientific Reports 2015; 5. doi: 10.1038/srep18053
  • [12] Wang C, Lin PP, Gong Y, Liu ZG, Lin TS et al. Co-doping effects of Ba2+ and Ta5+ on the microstructure and ionic conductivity of garnet-type solid state electrolytes. Journal of Alloys and Compounds 2021; 854. doi: 10.1016/j.jallcom.2020.157143
  • [13] Cao Z, Li Y, Su J, Zhao J, Li Y et al. Y and Sb co-doped Li7La3Zr2O12 electrolyte for all solid-state lithium batteries. Ionics 2021. doi: 10.1007/s11581-021-03919-z
  • [14] Dubey BP, Sahoo A, Thangadurai V, Sharma Y. Morphological, dielectric and transport properties of garnet-type Li6.25+yAl0.25La3Zr2-yMnyO12 (y=0, 0.05, 0.1, and 0.2). Solid State Ionics 2010; 351. doi: 10.1016/j.ssi.2020.115339
  • [15] Abrha LH, Hagos TT, Nikodimos Y, Bezabh HK, Berhe GB et al. Dual-doped cubic garnet solid electrolytes with superior air stability. Acs Applied Materials & Interfaces 2020; 12 (23): 25709-25717. doi: 10.1021/acsami.0c01289
  • [16] Karasulu B, Emge SP, Groh MF, Grey CP, Morris AJ. Al/Ga-Doped Li7La3Zr2O12 garnets as li-ıon solid-state battery electrolytes: atomistic ınsights into local coordination environments and their ınfluence on O-17, Al-27, and Ga-71 NMR Spectra. Journal of the American Chemical Society 2020; 142 (6): 3132-3148. doi: 10.1021/jacs.9b12685
  • [17] Zhang YH, Chen F, Tu R, Shen Q, Zhang XL et al. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State Ionics 2016; 284: 53-60. doi: 10.1016/j.ssi.2015.11.014
  • [18] Klysubun W, Tarawarakam P, Sombunchoo P, Klinkhieo S, Chaiprapa J et al. X-ray absorption spectroscopy beamline at the Siam Photon Laboratory. Synchrotron Radiation Instrumentation, Pts 1 and 2 2017; 879:860.
  • [19] Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation 2001; 8: 322-324. doi: 10.1107/S0909049500016964
  • [20] Lutterotti L. Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Crystallographica a-Foundation and Advances 2000; 56: S54-S54. doi: 10.1107/S0108767300021954
  • [21] Paolella A, Zhu W, Bertoni G, Savoie S, Feng ZM et al. Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability. Acs Applied Energy Materials 2020; 3 (4): 3415-3424. doi: 10.1021/ac- saem.9b02401
  • [22] Aktas S, Ozkendir OM, Eker YR, Ates S, Atav U et al. Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials. Journal of Alloys and Compounds 2019; 792:279-285. doi: 10.1016/j.jallcom.2019.04.049
  • [23] Cao ZZ, Wu WW, Li Y, Zhao JJ, He WY et al. Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics 2020; 26 (9): 4247-4256. doi: 10.1007/s11581-020-03580-y
  • [24] Li CL, Liu YF, He J, Brinkman KS. Ga-substituted Li7La3Zr2O12: An investigation based on grain coars- ening in garnet-type lithium ion conductors. Journal of Alloys and Compounds 2017; 695: 3744-3752. doi: 10.1016/j.jallcom.2016.11.277
  • [25] Afyon S, Krumeich F, Rupp JLM. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. Journal of Materials Chemistry A 2015; 3 (36): 18636-18648. doi: 10.1039/c5ta03239c
  • [26] Walter GW. A Review of ımpedance plot methods used for corrosion performance analysis of painted metals. Corrosion Science 1986; 26 (9): 681-703. doi: 10.1016/0010-938x(86)90033-8
  • [27] Haile SM, West DL, Campbell J. The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. Journal of Materials Research 1998; 13 (6): 1576-1595. doi: 10.1557/Jmr.1998.0219
  • [28] Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by ımpedance spectroscopy. Advanced Ma- terials 1990.
  • [29] BrucePG,WestAR.TheAcconductivityofpolycrystallinelisicon,Li2+2xzn1-Xgeo4,andamodelforıntergranular constriction resistances. Journal of the Electrochemical Society 1983; 130 (3): 662-669. doi: 10.1149/1.2119778

Ayrıntılar

Birincil Dil İngilizce
Konular Fizik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Sevda SARAN Bu kişi benim
Department of Physics, Faculty of Science, Selçuk University, Konya, Turkey
Türkiye


Osman Murat ÖZKENDİR Bu kişi benim
Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin, Turkey
Türkiye


Ülfet ATAV Bu kişi benim
Department of Physics, Faculty of Science, Selçuk University, Konya, Turkey
Türkiye

Yayımlanma Tarihi 28 Haziran 2021
Yayınlandığı Sayı Yıl 2021, Cilt 45, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { tbtkphysics964094, journal = {Turkish Journal of Physics}, issn = {1300-0101}, eissn = {1303-6122}, address = {}, publisher = {TÜBİTAK}, year = {2021}, volume = {45}, number = {3}, pages = {148 - 158}, title = {The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes}, key = {cite}, author = {Saran, Sevda and Özkendir, Osman Murat and Atav, Ülfet} }
APA Saran, S. , Özkendir, O. M. & Atav, Ü. (2021). The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes . Turkish Journal of Physics , 45 (3) , 148-158 . Retrieved from https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964094
MLA Saran, S. , Özkendir, O. M. , Atav, Ü. "The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes" . Turkish Journal of Physics 45 (2021 ): 148-158 <https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964094>
Chicago Saran, S. , Özkendir, O. M. , Atav, Ü. "The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes". Turkish Journal of Physics 45 (2021 ): 148-158
RIS TY - JOUR T1 - The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes AU - Sevda Saran , Osman Murat Özkendir , Ülfet Atav Y1 - 2021 PY - 2021 N1 - DO - T2 - Turkish Journal of Physics JF - Journal JO - JOR SP - 148 EP - 158 VL - 45 IS - 3 SN - 1300-0101-1303-6122 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Physics The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes %A Sevda Saran , Osman Murat Özkendir , Ülfet Atav %T The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes %D 2021 %J Turkish Journal of Physics %P 1300-0101-1303-6122 %V 45 %N 3 %R %U
ISNAD Saran, Sevda , Özkendir, Osman Murat , Atav, Ülfet . "The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes". Turkish Journal of Physics 45 / 3 (Haziran 2021): 148-158 .
AMA Saran S. , Özkendir O. M. , Atav Ü. The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes. Turkish Journal of Physics. 2021; 45(3): 148-158.
Vancouver Saran S. , Özkendir O. M. , Atav Ü. The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes. Turkish Journal of Physics. 2021; 45(3): 148-158.
IEEE S. Saran , O. M. Özkendir ve Ü. Atav , "The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes", Turkish Journal of Physics, c. 45, sayı. 3, ss. 148-158, Haz. 2021