Araştırma Makalesi
PDF EndNote BibTex Kaynak Göster

The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range

Yıl 2021, Cilt 45, Sayı 3, 159 - 168, 28.06.2021

Öz

The Al/Mg2Si/p-Si Schottky diode was fabricated using spin coating. The real (ε′) and imaginary (ε′′) components of complex dielectric (ε*), the real (M′) and imaginary (M′′) components of complex electric modulus (M*) and AC electrical conductivity (σ AC ) of the fabricated Al/Mg2 Si/p-Si Schottky diode (SD) were examined by using the impedance spectroscopy (IS) measurements in a wide frequency range of 1 kHz-1 MHz. The ε ′ and ε ′ ′ were obtained using the value of measured capacitance and conductance while the values of dielectric loss tangent (tanδ, M′, M′′ and σAC were obtained using the value of ε′ and ε′′. While the values of ε′, ε′′ and tanδ are almost independent of the frequency in the inversion and accumulation region, their value changes with the frequency, especially in the depletion region. The σAC was examined depending on the frequency and it was seen that its value increased with increasing frequency especially in depletion and accumulation region. The experimental results showed that the Mg2 Si can be used instead of conventionally used dielectric materials (SnO2 , SiO2 ).

Kaynakça

  • [1] Popescu M, Bunget I. Physics of Solid Dielectrics. Amsterdam, Netherlands: Elsevier, 1984.
  • [2] Kwan CK. Dielectric Phenomena in Solids. Amsterdam, Netherlands: Elsevier, 2004.
  • [3] Chelkowski A. Dielectric Physics. Amsterdam, Netherlands: Elsevier, 1980.
  • [4] Lu L, Lai MO, Hoe ML. Formation of nanocrystalline Mg2 Si and Mg2 Si dispersion strengthened Mg-Al alloy by mechanical alloying. Nanostructured Materials 1998; 10 4: 551-563. doi: 10.1016/S0965-97739800102-0
  • [5] Mondolfo LF. Aluminum Alloys: Structure and Properties. London, UK: ButterWorth, 1976.
  • [6] Tani J, Kido H. Thermoelectric properties of Bi-doped Mg2 Si semiconductors. Physica B: Condensed Matter 2005; 364 (1-4): 218-224. doi: 10.1016/j.physb.2005.04.017
  • [7] Roberts GA, Cairns EJ, Reimer JA. Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources 2002; 110 2: 424-429. doi: 10.1016/S0378-77530200207-0
  • [8] Kim H, Choi J, Sohn HJ, Kang T. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. Journal of the Electrochemical Society 1999; 146 12: 4401-4405. doi: 10.1149/1.1392650
  • [9] Bux SK, Yeung MT, Toberer ES, Snyder GJ, Kaner RB et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry 2011; 21 33: 12259-12266. doi: 10.1039/C1JM10827A
  • [10] Bose S, Acharya HN, Banerjee HD. Electrocal, thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk. Journal of Materials Science 1993; 28 20: 5461-5468. doi: 10.1007/BF00367816
  • [11] El-Amir Ahmed AM, Ohsawa T, Nabatame T, Ohi A, Wada Y et al. Ecofriendly Mg2Si-based photodi- ode for short-wavelength IR sensing. Materials Science in Semiconductor Processing 2019; 91: 222-229. doi: 10.1016/j.mssp.2018.11.033
  • [12] Sekino K, Midonoya M, Udono H, Yamada Y. Preparation of Schottky contacts on-type Mg2 Si single crystalline substrate. Physics Procedia 2011; 11: 171-173. doi: 10.1016/j.phpro.2011.01.047
  • [13] Kato T, Sago Y, Fujiwara H. Optoelectronic properties of Mg2Si semiconducting layers with high absorption coefficients. Journal of Applied Physics 2011; 110: 063723. doi: 10.1063/1.3642965
  • [14] Lenčéš Z, Hirao K, Šajgalík P, Hoffmann M. Thermodynamic and dielectric properties of MgSiN2 ceramics. Key Engineering Materials 2006; 317-318: 857-860. doi: 10.4028/www.scientific.net/KEM.317-318.857
  • [15] Fu Z, Ma J, Liu P, Li Y, Zhang X. Crystal structure and microwave dielectric properties of middle-temperature- sintered Mg2 Si(1−x) Vx O4 ceramics. Journal of Electroceramics 2016; 36: 82-86. doi: 10.1007/s10832-016-0020-7 v Hyun Kim S, Choi K-H, Lee H-M, Hwang D-H, Do L-M et al. Impedance spectroscopy of single- and double-layer polymer light-emitting diode. Journal of Applied Physics 2000; 87: 882. doi: 10.1063/1.371956
  • [16] SaghrouniH,JomniS,BelgacemW,HamdaouiN,BejiL.Physicalandelectricalcharacteristicsofmetal/Dy2O3/p- GaAs structure. Physica B: Condensed Matter 2014; 444: 58-64. doi: 10.1016/j.physb.2014.03.030
  • [17] Nicollian EH, Brews JR. MOS (Metal Oxide Semiconductor) Physics and Technology. New York, NY, USA: John Wiley & Sons, 1982, pp. 257-264.
  • [18] Kınacı B, The temperature dependent negative dielectric constant phenomena of Au/n–GaAs structure with CZO interfacial layer. Journal of Materials Science: Materials in Electronics 2021; 32: 5928-5935. doi: 10.1007/s10854- 021-05313-x
  • [19] Koçyiğit A, Orak İ, Türüt A. Temperature dependent dielectric properties of Au/ZnO/n-Si heterojuntion. Materials Research Express 2018; 5 3: 035906. doi: 10.1088/2053-1591/aab2e3
  • [20] Orak İ, Karabulut A. Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3/p-Si structure. Turkish Journal of Physics 2020; 44 1: 85-94. doi: 10.3906/fiz-1907- 21
  • [21] Sevgili Ö, Azizian-Kalandaragh Y, Altındal Ş. Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Physica B: Condensed Matter 2020; 587: 412122. doi: 10.1016/j.physb.2020.412122
  • [22] Yücedağ İ, Altındal Ş, Tataroğlu A. On the profile of frequency dependent series resistance and dielectric constant in MIS structure. Microelectronic Engineering 2007; 84 1: 180-186. doi: 10.1016/j.mee.2006.10.071
  • [23] Demirezen S. Frequency- and voltage-dependent dielectric properties and electrical conductivity of Au/PVA (Bi- doped)/n-Si Schottky barrier diodes at room temperature. Applied Physics A: Materials Science and Processing 2013; 112 4: 827-833. doi: 10.1007/s00339-013-7605-7
  • [24] Tataroğlu A, Yıldırım M, Baran HM. Dielectric characteristics of gamma irradiated Au/SnO2 /n-Si/Au (MOS) capacitor. Materials Science in Semiconductor Processing 2014; 28: 89-93. doi: 10.1016/j.mssp.2014.06.053
  • [25] Pochard I, Frykstrand S, Ahlström O, Forsgren J, Strømme M. Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy. Journal of Applied Physics 2014; 115 4: 044306. doi: 10.1063/1.4860276
  • [26] Prabakar K, Narayandass SK, Mangalaraj D. Dielectric properties of Cd0.6 Zn0.4 Te thin films. Physica Status Solidi (A) Applied Research 2003; 199 3: 507-514. doi: 10.1002/pssa.200306628
  • [27] Fouad SS, Sakr GB, Yahia IS, Abdel-Basset DM, Yakuphanoglu F. Capacitance and conductance characterization of nano-ZnGa 2 Te 4 /n-Si diode. Materials Research Bulletin 2014; 49: 369-383. doi: 10.1016/j.materresbull.2013.08.065
  • [28] Büyükbaş-Ulaşan A, Tataroğlu A. Effects of temperature on dielectric parameters of metal-oxide-semiconductor capacitor with thermal oxide layer. Journal of Nanoelectronics and Optoelectronics 2015; 10: 675-679. doi: 10.1166/jno.2015.1824
  • [29] Cherif A, Jomni S, Belgacem W, Elghoul N, Khirouni K et al. The temperature dependence on the electrical properties of dysprosium oxide deposited on p-Si substrate. Materials Science in Semiconductor Processing 2015; 29: 143-149. doi: 10.1016/j.mssp.2014.01.031
  • [30] Shukla N, Kumar V, Dwivedi DK. Dependence of dielectric parameters and A.C. conductivity on frequency and temperature in bulk Se90 Cd8 In2 glassy alloy. Journal of Non-Oxide Glasses 2016; 8 (2): 47-57.
  • [31] Karabulut A, Türüt A, Karataş Ş. The electrical and dielectric properties of the Au/Ti/HfO2/n-GaAs structures. Journal of Molecular Structure 2018; 1157: 513-518. doi: 10.1016/j.molstruc.2017.12.087
  • [33] Shiwakoti N, Bobby A, Antony B, Asokan K. Interface state density and dielectric properties of Au/n-GaP Schottky diode. Journal of Vacuum Science & Technology B 2016; 34 5: 051206. doi: 10.1116/1.4961907
  • [32] Wang Z, Zhou W, Dong L, Sui X, Cai H et al. Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. Journal of Alloys and Compounds 2016; 682: 738-745. doi: 10.1016/j.jallcom.2016.05.025
  • [33] Özen Y. Detailed consideration of electrical and dielectric properties of Au/Ni/n-Si MS structure in a wide frequency range. Silicon 2020. doi: 10.1007/s12633-020-00656-2
  • [34] Coşkun M, Polat Ö, Coşkun FM, Durmuş Z, Çağlar M et al. The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90 Ir0.10 O3 perovskites. RSC Advances 2018; 8: 4634-4648. doi: 10.1039/C7RA13261A
  • [35] Azizian-Kalandaragh Y, Yücedağ İ, Ersöz Demir G, Altındal Ş. Investigation of the variation of dielectric properties by applying frequency and voltage to Al/(CdS-PVA)/p-Si structures. Journal of Molecular Structure 2021; 1224 (1-5): 129325. doi: 10.1016/j.molstruc.2020.129325
  • [36] Sevgili Ö, Taşçıoğlu İ, Boughdachi S, Azizian-Kalandaragh Y, Altındal Ş. Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Physica B: Condensed Matter 2019; 566: 125-135. doi: 10.1016/j.physb.2019.04.029
  • [37] Tataroğlu A, Altındal Ş, Bülbül MM. Temperature and frequency dependent electrical and dielectric properties of Al/SiO2 /p-Si (MOS) structure. Microelectronic Engineering 2005; 81 1: 140-149. doi: 10.1016/j.mee.2005.04.008
  • [38] Karabulut A. Dielectric characterization of Si-based heterojunction with TiO2 interfacial layer. Journal of the Institute of Science and Technology 2018; 8 3: 119-129. doi: 10.21597/jist.418869
  • [39] TecimerH.Onthefrequency–voltagedependentelectricalanddielectricprofilesoftheAl/(Zn-PVA)/p-Sistructures. Journal of Materials Science: Materials in Electronics 2018; 29: 20141-20145. doi: 10.1007/s10854-018-0146-2
  • [40] Dubey AK, Singh P, Singh S, Kumar D, Parkash O. Charge compensation, electrical and dielectric behav- ior of lanthanum doped CaCu3 Ti4 O12 . Journal of Alloys and Compounds 2011; 509 9: 3899-3906. doi: 10.1016/j.jallcom.2010.12.156
  • [41] TataroğluA,Yücedağİ,AltındalŞ.DielectricpropertiesandacelectricalconductivitystudiesofMIStypeSchottky diodes at high temperatures. Microelectronic Engineering 2008; 85 7: 1518-1523. doi: 10.1016/j.mee.2008.02.005
  • [42] Ertuğrul R, Tataroğlu A. Influence of temperature and frequency on dielectric permittivity and ac conductivity of Au/SnO 2 /n-Si (MOS) structures. Chinese Physics Letters 2012; 29 7: 077304. doi: 10.1088/0256-307X/29/7/077304
  • [43] Badali Y, Altindal Ş, Uslu İ. Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Progress in Natural Science: Materials International 2018; 28 3: 325-331. doi: 10.1016/j.pnsc.2018.05.003
  • [44] Karadaş S, Altındal Yerişkin S, Balbaşı M, Azizian-Kalandaragh Y. Complex dielectric, complex electric modu- lus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. Journal of Physics and Chemistry of Solids 2021; 148: 109740. doi: 10.1016/j.jpcs.2020.109740
  • [45] Altındal Yerişkin S, Ersöz Demir G, Yücedağ İ. On the frequency-voltage dependence profile of complex dielectric, complex electric modulus and electrical conductivity in Al/ZnO/p-GaAs type structure at room temperature. Journal of Nanoelectronics and Optoelectronics 2019; 14 8: 1126-1132. doi: 10.1166/jno.2019.2623
  • [46] Kaya A, Vural Ö, Tecimer H, Demirezen S, Altındal Ş. Frequency and voltage dependence of dielectric properties and electric modulus in Au/PVC+TCNQ/p-Si structure at room temperature. Current Applied Physics 2014; 14: 322-330. doi: doi: 10.1016/j.cap.2013.12.005

Yıl 2021, Cilt 45, Sayı 3, 159 - 168, 28.06.2021

Öz

Kaynakça

  • [1] Popescu M, Bunget I. Physics of Solid Dielectrics. Amsterdam, Netherlands: Elsevier, 1984.
  • [2] Kwan CK. Dielectric Phenomena in Solids. Amsterdam, Netherlands: Elsevier, 2004.
  • [3] Chelkowski A. Dielectric Physics. Amsterdam, Netherlands: Elsevier, 1980.
  • [4] Lu L, Lai MO, Hoe ML. Formation of nanocrystalline Mg2 Si and Mg2 Si dispersion strengthened Mg-Al alloy by mechanical alloying. Nanostructured Materials 1998; 10 4: 551-563. doi: 10.1016/S0965-97739800102-0
  • [5] Mondolfo LF. Aluminum Alloys: Structure and Properties. London, UK: ButterWorth, 1976.
  • [6] Tani J, Kido H. Thermoelectric properties of Bi-doped Mg2 Si semiconductors. Physica B: Condensed Matter 2005; 364 (1-4): 218-224. doi: 10.1016/j.physb.2005.04.017
  • [7] Roberts GA, Cairns EJ, Reimer JA. Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources 2002; 110 2: 424-429. doi: 10.1016/S0378-77530200207-0
  • [8] Kim H, Choi J, Sohn HJ, Kang T. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. Journal of the Electrochemical Society 1999; 146 12: 4401-4405. doi: 10.1149/1.1392650
  • [9] Bux SK, Yeung MT, Toberer ES, Snyder GJ, Kaner RB et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry 2011; 21 33: 12259-12266. doi: 10.1039/C1JM10827A
  • [10] Bose S, Acharya HN, Banerjee HD. Electrocal, thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk. Journal of Materials Science 1993; 28 20: 5461-5468. doi: 10.1007/BF00367816
  • [11] El-Amir Ahmed AM, Ohsawa T, Nabatame T, Ohi A, Wada Y et al. Ecofriendly Mg2Si-based photodi- ode for short-wavelength IR sensing. Materials Science in Semiconductor Processing 2019; 91: 222-229. doi: 10.1016/j.mssp.2018.11.033
  • [12] Sekino K, Midonoya M, Udono H, Yamada Y. Preparation of Schottky contacts on-type Mg2 Si single crystalline substrate. Physics Procedia 2011; 11: 171-173. doi: 10.1016/j.phpro.2011.01.047
  • [13] Kato T, Sago Y, Fujiwara H. Optoelectronic properties of Mg2Si semiconducting layers with high absorption coefficients. Journal of Applied Physics 2011; 110: 063723. doi: 10.1063/1.3642965
  • [14] Lenčéš Z, Hirao K, Šajgalík P, Hoffmann M. Thermodynamic and dielectric properties of MgSiN2 ceramics. Key Engineering Materials 2006; 317-318: 857-860. doi: 10.4028/www.scientific.net/KEM.317-318.857
  • [15] Fu Z, Ma J, Liu P, Li Y, Zhang X. Crystal structure and microwave dielectric properties of middle-temperature- sintered Mg2 Si(1−x) Vx O4 ceramics. Journal of Electroceramics 2016; 36: 82-86. doi: 10.1007/s10832-016-0020-7 v Hyun Kim S, Choi K-H, Lee H-M, Hwang D-H, Do L-M et al. Impedance spectroscopy of single- and double-layer polymer light-emitting diode. Journal of Applied Physics 2000; 87: 882. doi: 10.1063/1.371956
  • [16] SaghrouniH,JomniS,BelgacemW,HamdaouiN,BejiL.Physicalandelectricalcharacteristicsofmetal/Dy2O3/p- GaAs structure. Physica B: Condensed Matter 2014; 444: 58-64. doi: 10.1016/j.physb.2014.03.030
  • [17] Nicollian EH, Brews JR. MOS (Metal Oxide Semiconductor) Physics and Technology. New York, NY, USA: John Wiley & Sons, 1982, pp. 257-264.
  • [18] Kınacı B, The temperature dependent negative dielectric constant phenomena of Au/n–GaAs structure with CZO interfacial layer. Journal of Materials Science: Materials in Electronics 2021; 32: 5928-5935. doi: 10.1007/s10854- 021-05313-x
  • [19] Koçyiğit A, Orak İ, Türüt A. Temperature dependent dielectric properties of Au/ZnO/n-Si heterojuntion. Materials Research Express 2018; 5 3: 035906. doi: 10.1088/2053-1591/aab2e3
  • [20] Orak İ, Karabulut A. Frequency and voltage dependence of electrical conductivity, complex electric modulus, and dielectric properties of Al/Alq3/p-Si structure. Turkish Journal of Physics 2020; 44 1: 85-94. doi: 10.3906/fiz-1907- 21
  • [21] Sevgili Ö, Azizian-Kalandaragh Y, Altındal Ş. Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Physica B: Condensed Matter 2020; 587: 412122. doi: 10.1016/j.physb.2020.412122
  • [22] Yücedağ İ, Altındal Ş, Tataroğlu A. On the profile of frequency dependent series resistance and dielectric constant in MIS structure. Microelectronic Engineering 2007; 84 1: 180-186. doi: 10.1016/j.mee.2006.10.071
  • [23] Demirezen S. Frequency- and voltage-dependent dielectric properties and electrical conductivity of Au/PVA (Bi- doped)/n-Si Schottky barrier diodes at room temperature. Applied Physics A: Materials Science and Processing 2013; 112 4: 827-833. doi: 10.1007/s00339-013-7605-7
  • [24] Tataroğlu A, Yıldırım M, Baran HM. Dielectric characteristics of gamma irradiated Au/SnO2 /n-Si/Au (MOS) capacitor. Materials Science in Semiconductor Processing 2014; 28: 89-93. doi: 10.1016/j.mssp.2014.06.053
  • [25] Pochard I, Frykstrand S, Ahlström O, Forsgren J, Strømme M. Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy. Journal of Applied Physics 2014; 115 4: 044306. doi: 10.1063/1.4860276
  • [26] Prabakar K, Narayandass SK, Mangalaraj D. Dielectric properties of Cd0.6 Zn0.4 Te thin films. Physica Status Solidi (A) Applied Research 2003; 199 3: 507-514. doi: 10.1002/pssa.200306628
  • [27] Fouad SS, Sakr GB, Yahia IS, Abdel-Basset DM, Yakuphanoglu F. Capacitance and conductance characterization of nano-ZnGa 2 Te 4 /n-Si diode. Materials Research Bulletin 2014; 49: 369-383. doi: 10.1016/j.materresbull.2013.08.065
  • [28] Büyükbaş-Ulaşan A, Tataroğlu A. Effects of temperature on dielectric parameters of metal-oxide-semiconductor capacitor with thermal oxide layer. Journal of Nanoelectronics and Optoelectronics 2015; 10: 675-679. doi: 10.1166/jno.2015.1824
  • [29] Cherif A, Jomni S, Belgacem W, Elghoul N, Khirouni K et al. The temperature dependence on the electrical properties of dysprosium oxide deposited on p-Si substrate. Materials Science in Semiconductor Processing 2015; 29: 143-149. doi: 10.1016/j.mssp.2014.01.031
  • [30] Shukla N, Kumar V, Dwivedi DK. Dependence of dielectric parameters and A.C. conductivity on frequency and temperature in bulk Se90 Cd8 In2 glassy alloy. Journal of Non-Oxide Glasses 2016; 8 (2): 47-57.
  • [31] Karabulut A, Türüt A, Karataş Ş. The electrical and dielectric properties of the Au/Ti/HfO2/n-GaAs structures. Journal of Molecular Structure 2018; 1157: 513-518. doi: 10.1016/j.molstruc.2017.12.087
  • [33] Shiwakoti N, Bobby A, Antony B, Asokan K. Interface state density and dielectric properties of Au/n-GaP Schottky diode. Journal of Vacuum Science & Technology B 2016; 34 5: 051206. doi: 10.1116/1.4961907
  • [32] Wang Z, Zhou W, Dong L, Sui X, Cai H et al. Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. Journal of Alloys and Compounds 2016; 682: 738-745. doi: 10.1016/j.jallcom.2016.05.025
  • [33] Özen Y. Detailed consideration of electrical and dielectric properties of Au/Ni/n-Si MS structure in a wide frequency range. Silicon 2020. doi: 10.1007/s12633-020-00656-2
  • [34] Coşkun M, Polat Ö, Coşkun FM, Durmuş Z, Çağlar M et al. The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90 Ir0.10 O3 perovskites. RSC Advances 2018; 8: 4634-4648. doi: 10.1039/C7RA13261A
  • [35] Azizian-Kalandaragh Y, Yücedağ İ, Ersöz Demir G, Altındal Ş. Investigation of the variation of dielectric properties by applying frequency and voltage to Al/(CdS-PVA)/p-Si structures. Journal of Molecular Structure 2021; 1224 (1-5): 129325. doi: 10.1016/j.molstruc.2020.129325
  • [36] Sevgili Ö, Taşçıoğlu İ, Boughdachi S, Azizian-Kalandaragh Y, Altındal Ş. Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Physica B: Condensed Matter 2019; 566: 125-135. doi: 10.1016/j.physb.2019.04.029
  • [37] Tataroğlu A, Altındal Ş, Bülbül MM. Temperature and frequency dependent electrical and dielectric properties of Al/SiO2 /p-Si (MOS) structure. Microelectronic Engineering 2005; 81 1: 140-149. doi: 10.1016/j.mee.2005.04.008
  • [38] Karabulut A. Dielectric characterization of Si-based heterojunction with TiO2 interfacial layer. Journal of the Institute of Science and Technology 2018; 8 3: 119-129. doi: 10.21597/jist.418869
  • [39] TecimerH.Onthefrequency–voltagedependentelectricalanddielectricprofilesoftheAl/(Zn-PVA)/p-Sistructures. Journal of Materials Science: Materials in Electronics 2018; 29: 20141-20145. doi: 10.1007/s10854-018-0146-2
  • [40] Dubey AK, Singh P, Singh S, Kumar D, Parkash O. Charge compensation, electrical and dielectric behav- ior of lanthanum doped CaCu3 Ti4 O12 . Journal of Alloys and Compounds 2011; 509 9: 3899-3906. doi: 10.1016/j.jallcom.2010.12.156
  • [41] TataroğluA,Yücedağİ,AltındalŞ.DielectricpropertiesandacelectricalconductivitystudiesofMIStypeSchottky diodes at high temperatures. Microelectronic Engineering 2008; 85 7: 1518-1523. doi: 10.1016/j.mee.2008.02.005
  • [42] Ertuğrul R, Tataroğlu A. Influence of temperature and frequency on dielectric permittivity and ac conductivity of Au/SnO 2 /n-Si (MOS) structures. Chinese Physics Letters 2012; 29 7: 077304. doi: 10.1088/0256-307X/29/7/077304
  • [43] Badali Y, Altindal Ş, Uslu İ. Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures. Progress in Natural Science: Materials International 2018; 28 3: 325-331. doi: 10.1016/j.pnsc.2018.05.003
  • [44] Karadaş S, Altındal Yerişkin S, Balbaşı M, Azizian-Kalandaragh Y. Complex dielectric, complex electric modu- lus, and electrical conductivity in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. Journal of Physics and Chemistry of Solids 2021; 148: 109740. doi: 10.1016/j.jpcs.2020.109740
  • [45] Altındal Yerişkin S, Ersöz Demir G, Yücedağ İ. On the frequency-voltage dependence profile of complex dielectric, complex electric modulus and electrical conductivity in Al/ZnO/p-GaAs type structure at room temperature. Journal of Nanoelectronics and Optoelectronics 2019; 14 8: 1126-1132. doi: 10.1166/jno.2019.2623
  • [46] Kaya A, Vural Ö, Tecimer H, Demirezen S, Altındal Ş. Frequency and voltage dependence of dielectric properties and electric modulus in Au/PVC+TCNQ/p-Si structure at room temperature. Current Applied Physics 2014; 14: 322-330. doi: doi: 10.1016/j.cap.2013.12.005

Ayrıntılar

Birincil Dil İngilizce
Konular Fizik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Ömer SEVGİLİ Bu kişi benim
Vocational School of Health Services, Bingöl University, Bingöl, Turkey
Türkiye

Yayımlanma Tarihi 28 Haziran 2021
Yayınlandığı Sayı Yıl 2021, Cilt 45, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { tbtkphysics964099, journal = {Turkish Journal of Physics}, issn = {1300-0101}, eissn = {1303-6122}, address = {}, publisher = {TÜBİTAK}, year = {2021}, volume = {45}, number = {3}, pages = {159 - 168}, title = {The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range}, key = {cite}, author = {Sevgili, Ömer} }
APA Sevgili, Ö. (2021). The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range . Turkish Journal of Physics , 45 (3) , 159-168 . Retrieved from https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964099
MLA Sevgili, Ö. "The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range" . Turkish Journal of Physics 45 (2021 ): 159-168 <https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964099>
Chicago Sevgili, Ö. "The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range". Turkish Journal of Physics 45 (2021 ): 159-168
RIS TY - JOUR T1 - The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range AU - Ömer Sevgili Y1 - 2021 PY - 2021 N1 - DO - T2 - Turkish Journal of Physics JF - Journal JO - JOR SP - 159 EP - 168 VL - 45 IS - 3 SN - 1300-0101-1303-6122 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Physics The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range %A Ömer Sevgili %T The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range %D 2021 %J Turkish Journal of Physics %P 1300-0101-1303-6122 %V 45 %N 3 %R %U
ISNAD Sevgili, Ömer . "The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range". Turkish Journal of Physics 45 / 3 (Haziran 2021): 159-168 .
AMA Sevgili Ö. The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range. Turkish Journal of Physics. 2021; 45(3): 159-168.
Vancouver Sevgili Ö. The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range. Turkish Journal of Physics. 2021; 45(3): 159-168.
IEEE Ö. Sevgili , "The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range", Turkish Journal of Physics, c. 45, sayı. 3, ss. 159-168, Haz. 2021