Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors

Yıl 2021, Cilt 45, Sayı 3, 169 - 177, 28.06.2021

Öz

Monoclinic gallium oxide (β−Ga2O3) has found great research interest in solar blind photodetector (SBP) applications due to its’ bandgap ∼4.85 eV and availability of high quality native crystal growth. Applications includ- ing missile guidance, flame detection, underwater/intersatellite communication and water purification systems require SBPs. β−Ga2O3 SBPs with high responsivity values have been published indicating internal gain in these devices. The gain has been attributed to accumulation of self-trapped hole (STH) below Schottky metal which the lowers Schot- tky barrier in these devices based on some approximations rather than a proper device simulation. In this paper, technology computer-aided design (TCAD) simulation of β−Ga2O3 SBPs are performed to numerically investigate the effect of low hole mobility STHs on Schottky barrier lowering (SBL). The simulations revealed that based on the theoretical hole mobility of 1 × 10−6 cm2V−1s−1 , photoconductive gain in β−Ga2O3 based photodetectors cannot be attributed to STH related hole accumulation near Schottky contact. It is found that hole mobility in the range of 1 × 10−10 cm2 V−1 s−1 − 1 × 10−12 cm2 V−1 s−1 is required to induce ∼ 0.3 eV of SBL potential. Unless such low hole mobility is reported either experimentally or theoretically, it is not reasonable to attribute gain to STH formation in these devices.

Kaynakça

  • [1] Tomm Y, Reiche P, Klimm D, Fukuda T. Czochralski grown Ga2O3 crystals. Journal of Crystal Growth 2000; 220 (4): 510-514. doi:10.1016/S0022-0248(00)00851-4
  • [2] Ohira S, Yoshioka M, Sugawara T, Nakajima K, Shishido T. Fabrication of hexagonal GaN on the surface of β- Ga2O 3 single crystal by nitridation with NH3. In: Thin Solid Films, Vol. 496. Amsterdam, Netherlands: Elsevier, 2006, pp. 53-57. doi: 10.1016/j.tsf.2005.08.230
  • [3] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M et al. On the bulk β -Ga2O3single crystals grown by the Czochralski method. Journal of Crystal Growth 2014; 404: 184-191. doi: 10.1016/j.jcrysgro.2014.07.021
  • [4] Villora EG, Shimamura K, Yoshikawa Y, Aoki K, Ichinose N. Large-size β-Ga2O3 single crystals and wafers. Journal of Crystal Growth 2004; 270 (3-4): 420-426. doi: 10.1016/j.jcrysgro.2004.06.027
  • [5] Kumar Saikumar A, Dhanraj S, Sundaram KB. Review-RF sputtered films of Ga2O3. ECS Journal of Solid State Science and Technology 2019; 8: 3064-3078. doi: 10.1149/2.0141907jss
  • [6] Wei J, Kim K, Liu F, Wang P, Zheng X et al. β -Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. Journal of Semiconductors 2019; 40. doi:10.1088/1674-4926/40/1/012802
  • [7] Oshima Y, Víllora EG, Shimamura K. Quasi-heteroepitaxial growth of β-Ga2O3on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy. Journal of Crystal Growth 2015; 410: 53-58. doi: 10.1016/j.jcrysgro.2014.10.038
  • [8] Zhang Y, Xia Z, Mcglone J, Sun W, Joichi J et al. Evaluation of low-temperature saturation modulation-doped field-effect transistors. IEEE Transactions on Electron Devices 2019; 66: 1574-1578. doi: 10.1109/TED.2018.2889573
  • [9] Pratiyush AS, Krishnamoorthy S, Muralidharan R, Rajan S, Nath DN. Advances in Ga2O3 solar-blind UV pho- todetectors. In: Gallium Oxide: Technology, Devices and Applications. Amsterdam, Netherlands: Elsevier, 2018, pp. 369-399. doi: 10.1016/B978-0-12-814521-0.00016-6
  • [10] Qin Y, Li L, Zhao X, Tompa GS, Dong H et al. Metal-Semiconductor-Metal ε-Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism. ACS Photonics. 2020;7:812-820. doi:10.1021/acsphotonics.9b01727
  • [11] Pratiyush AS, Krishnamoorthy S, Kumar S, Xia Z. Muralidharan R et al. MBE grown self-powered β -Ga2O3 MSM deep-UV photodetector. arXiv 2018. arXiv:1802.01574.
  • [12] Chen X, Xu Y, Zhou D, Yang S, Ren FF et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Applied Materials & Interfaces 2017; 9: 36997-37005. doi: 10.1021/acsami.7b09812
  • [13] Oshima T, Okuno T, Arai N, Suzuki N, Ohira S et al. Vertical solar-blind deep-ultraviolet schottky photodetectors based on β -Ga2O3 substrates. Applied Physics Express 2008; 1. doi: 10.1143/APEX.1.011202
  • [14] Armstrong AM, Crawford MH, Jayawardena A, Ahyi A, Dhar S. Role of self-trapped holes in the photoconductive gain of β -gallium oxide Schottky diodes. Journal of Applied Physics 2016; 119: 1-7. doi: 10.1063/1.4943261
  • [15] Varley JB, Janotti A, Franchini C, Van De Walle CG. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Physical Review B 2012; 85: 2-5. doi: 10.1103/PhysRevB.85.081109
  • [16] Adnan MM, Verma D, Xia Z, Kalarickal NK, Rajan S et al. Spectral measurement of the breakdown limit of β -Ga2O3 and field-dependent dissociation of self-trapped excitons and holes. arXiv 2020. arXiv:2011.00375.
  • [17] Kananen BE, Giles NC, Halliburton LE, Foundos GK, Chang KB et al. Self-trapped holes in β -Ga 2 O 3 crystals. Journal of Applied Physics 2017; 122: 215703. doi: 10.1063/1.5007095
  • [18] Frodason YK, Johansen KM, Vines L, Varley JB. Self-trapped hole and impurity-related broad luminescence in β -Ga2O3. Journal of Applied Physics 2020; 127: 075701. doi: 10.1063/1.5140742
  • [19] Jiang ZX, Wu ZY, Ma CC, Deng JN, Zhang H et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product. Materials Today Physics 2020; 14: 100226. doi: 10.1016/j.mtphys.2020.100226
  • [20] Islam MM, Liedke MO, Winarski D, Butterling M, Wagner A et al. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Nature Scientific Reports 2020; 10: 6134. doi: 10.1038/s41598-020- 62948-2
  • [21] Akyol F. Simulation of β-Ga2O3 vertical Schottky diode based photodetectors revealing average hole mobility of 20 cm2 V− 1 s− 1. Journal of Applied Physics 2020; 127: 074501. doi: 10.1063/1.5136306
  • [22] Takakura K, Koga D, Ohyama H, Rafi JM, Kayamoto Y et al. Evaluation of the crystalline quality of β -Ga2O3 films by optical absorption measurements. Physica B: Condensed Matter 2009; 404 (23-24): 4854-4857. doi: 10.1016/j.physb.2009.08.167
  • [23] Schottky W. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Zeitschrift fur Physics 1939; 113 (5-6): 367-414 (in German). doi: 10.1007/BF01340116
  • [24] Mott NF. The theory of crystal rectifiers. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1939; 171: 27-38. doi: 10.1098/rspa.1939.0051
  • [25] Lorenz MR, Woods JF, Gambino RJ. Some electrical properties of the semiconductor β Ga2O3. Journal of Physics and Chemistry of Solids 1967; 28 (3): 403-404. doi: 10.1016/0022-3697(67)90305-8
  • [26] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R et al. Schottky barrier height of Au on the transparent semiconducting oxide β -Ga2O3. Applied Physics Letters 2012; 101: 132106. doi: 10.1063/1.4755770
  • [27] Passlack M, Hunt NEJ, Schubert EF, Zydzik GJ, Mong M et al. Dielectric properties of electron-beam deposited Ga2O3 films. Appled Physics Letters 1994; 64: 2715-2717. doi: 10.1063/1.111452
  • [28] Oishi T, Koga Y, Harada K, Kasu M. High-mobility β -Ga 2 O 3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Applied Physics Express 2015; 8: 031101. doi: 10.7567/APEX.8.031101
  • [29] Irmscher K, Galazka Z, Pietsch M, Uecker R, Fornari R. Electrical properties of β -Ga2O3 single crystals grown by the Czochralski method. Journal of Applied Physics 2011; 110. doi: 10.1063/1.3642962
  • [30] Korhonen E, Tuomisto F, Gogova D, Wagner G, Baldini M et al. Electrical compensation by Ga vacancies in Ga2O3 thin films. Applied Physics Letters 2015; 106: 242103. doi: 10.1063/1.4922814
  • [31] Alema F, Hertog B, Mukhopadhyay P, Zhang Y. Mauze A et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film. Applied Physics Letters Materials 2019; 7. doi: 10.1063/1.5064471
  • [32] Shockley W, Read WT. Statistics of the recombinations of holes and electrons. Physical Reviews 1952; 87: 835-842. doi: 10.1103/PhysRev.87.835
  • [33] Katz O, Garber V, Meyler B, Bahir G, Salzman J. Gain mechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters 2001; 79: 1417-1419. doi: 10.1063/1.1394717
  • [34] Singh Pratiyush A, Krishnamoorthy S, Vishnu Solanke S, Zhanbo X, Muralidharan R et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Applied Physics Letters 2017; 110: 1-6. doi: 10.1063/1.4984904

Yıl 2021, Cilt 45, Sayı 3, 169 - 177, 28.06.2021

Öz

Kaynakça

  • [1] Tomm Y, Reiche P, Klimm D, Fukuda T. Czochralski grown Ga2O3 crystals. Journal of Crystal Growth 2000; 220 (4): 510-514. doi:10.1016/S0022-0248(00)00851-4
  • [2] Ohira S, Yoshioka M, Sugawara T, Nakajima K, Shishido T. Fabrication of hexagonal GaN on the surface of β- Ga2O 3 single crystal by nitridation with NH3. In: Thin Solid Films, Vol. 496. Amsterdam, Netherlands: Elsevier, 2006, pp. 53-57. doi: 10.1016/j.tsf.2005.08.230
  • [3] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M et al. On the bulk β -Ga2O3single crystals grown by the Czochralski method. Journal of Crystal Growth 2014; 404: 184-191. doi: 10.1016/j.jcrysgro.2014.07.021
  • [4] Villora EG, Shimamura K, Yoshikawa Y, Aoki K, Ichinose N. Large-size β-Ga2O3 single crystals and wafers. Journal of Crystal Growth 2004; 270 (3-4): 420-426. doi: 10.1016/j.jcrysgro.2004.06.027
  • [5] Kumar Saikumar A, Dhanraj S, Sundaram KB. Review-RF sputtered films of Ga2O3. ECS Journal of Solid State Science and Technology 2019; 8: 3064-3078. doi: 10.1149/2.0141907jss
  • [6] Wei J, Kim K, Liu F, Wang P, Zheng X et al. β -Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. Journal of Semiconductors 2019; 40. doi:10.1088/1674-4926/40/1/012802
  • [7] Oshima Y, Víllora EG, Shimamura K. Quasi-heteroepitaxial growth of β-Ga2O3on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy. Journal of Crystal Growth 2015; 410: 53-58. doi: 10.1016/j.jcrysgro.2014.10.038
  • [8] Zhang Y, Xia Z, Mcglone J, Sun W, Joichi J et al. Evaluation of low-temperature saturation modulation-doped field-effect transistors. IEEE Transactions on Electron Devices 2019; 66: 1574-1578. doi: 10.1109/TED.2018.2889573
  • [9] Pratiyush AS, Krishnamoorthy S, Muralidharan R, Rajan S, Nath DN. Advances in Ga2O3 solar-blind UV pho- todetectors. In: Gallium Oxide: Technology, Devices and Applications. Amsterdam, Netherlands: Elsevier, 2018, pp. 369-399. doi: 10.1016/B978-0-12-814521-0.00016-6
  • [10] Qin Y, Li L, Zhao X, Tompa GS, Dong H et al. Metal-Semiconductor-Metal ε-Ga2O3 Solar-Blind Photodetectors with a Record-High Responsivity Rejection Ratio and Their Gain Mechanism. ACS Photonics. 2020;7:812-820. doi:10.1021/acsphotonics.9b01727
  • [11] Pratiyush AS, Krishnamoorthy S, Kumar S, Xia Z. Muralidharan R et al. MBE grown self-powered β -Ga2O3 MSM deep-UV photodetector. arXiv 2018. arXiv:1802.01574.
  • [12] Chen X, Xu Y, Zhou D, Yang S, Ren FF et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Applied Materials & Interfaces 2017; 9: 36997-37005. doi: 10.1021/acsami.7b09812
  • [13] Oshima T, Okuno T, Arai N, Suzuki N, Ohira S et al. Vertical solar-blind deep-ultraviolet schottky photodetectors based on β -Ga2O3 substrates. Applied Physics Express 2008; 1. doi: 10.1143/APEX.1.011202
  • [14] Armstrong AM, Crawford MH, Jayawardena A, Ahyi A, Dhar S. Role of self-trapped holes in the photoconductive gain of β -gallium oxide Schottky diodes. Journal of Applied Physics 2016; 119: 1-7. doi: 10.1063/1.4943261
  • [15] Varley JB, Janotti A, Franchini C, Van De Walle CG. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Physical Review B 2012; 85: 2-5. doi: 10.1103/PhysRevB.85.081109
  • [16] Adnan MM, Verma D, Xia Z, Kalarickal NK, Rajan S et al. Spectral measurement of the breakdown limit of β -Ga2O3 and field-dependent dissociation of self-trapped excitons and holes. arXiv 2020. arXiv:2011.00375.
  • [17] Kananen BE, Giles NC, Halliburton LE, Foundos GK, Chang KB et al. Self-trapped holes in β -Ga 2 O 3 crystals. Journal of Applied Physics 2017; 122: 215703. doi: 10.1063/1.5007095
  • [18] Frodason YK, Johansen KM, Vines L, Varley JB. Self-trapped hole and impurity-related broad luminescence in β -Ga2O3. Journal of Applied Physics 2020; 127: 075701. doi: 10.1063/1.5140742
  • [19] Jiang ZX, Wu ZY, Ma CC, Deng JN, Zhang H et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product. Materials Today Physics 2020; 14: 100226. doi: 10.1016/j.mtphys.2020.100226
  • [20] Islam MM, Liedke MO, Winarski D, Butterling M, Wagner A et al. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Nature Scientific Reports 2020; 10: 6134. doi: 10.1038/s41598-020- 62948-2
  • [21] Akyol F. Simulation of β-Ga2O3 vertical Schottky diode based photodetectors revealing average hole mobility of 20 cm2 V− 1 s− 1. Journal of Applied Physics 2020; 127: 074501. doi: 10.1063/1.5136306
  • [22] Takakura K, Koga D, Ohyama H, Rafi JM, Kayamoto Y et al. Evaluation of the crystalline quality of β -Ga2O3 films by optical absorption measurements. Physica B: Condensed Matter 2009; 404 (23-24): 4854-4857. doi: 10.1016/j.physb.2009.08.167
  • [23] Schottky W. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Zeitschrift fur Physics 1939; 113 (5-6): 367-414 (in German). doi: 10.1007/BF01340116
  • [24] Mott NF. The theory of crystal rectifiers. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1939; 171: 27-38. doi: 10.1098/rspa.1939.0051
  • [25] Lorenz MR, Woods JF, Gambino RJ. Some electrical properties of the semiconductor β Ga2O3. Journal of Physics and Chemistry of Solids 1967; 28 (3): 403-404. doi: 10.1016/0022-3697(67)90305-8
  • [26] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R et al. Schottky barrier height of Au on the transparent semiconducting oxide β -Ga2O3. Applied Physics Letters 2012; 101: 132106. doi: 10.1063/1.4755770
  • [27] Passlack M, Hunt NEJ, Schubert EF, Zydzik GJ, Mong M et al. Dielectric properties of electron-beam deposited Ga2O3 films. Appled Physics Letters 1994; 64: 2715-2717. doi: 10.1063/1.111452
  • [28] Oishi T, Koga Y, Harada K, Kasu M. High-mobility β -Ga 2 O 3 (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Applied Physics Express 2015; 8: 031101. doi: 10.7567/APEX.8.031101
  • [29] Irmscher K, Galazka Z, Pietsch M, Uecker R, Fornari R. Electrical properties of β -Ga2O3 single crystals grown by the Czochralski method. Journal of Applied Physics 2011; 110. doi: 10.1063/1.3642962
  • [30] Korhonen E, Tuomisto F, Gogova D, Wagner G, Baldini M et al. Electrical compensation by Ga vacancies in Ga2O3 thin films. Applied Physics Letters 2015; 106: 242103. doi: 10.1063/1.4922814
  • [31] Alema F, Hertog B, Mukhopadhyay P, Zhang Y. Mauze A et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film. Applied Physics Letters Materials 2019; 7. doi: 10.1063/1.5064471
  • [32] Shockley W, Read WT. Statistics of the recombinations of holes and electrons. Physical Reviews 1952; 87: 835-842. doi: 10.1103/PhysRev.87.835
  • [33] Katz O, Garber V, Meyler B, Bahir G, Salzman J. Gain mechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters 2001; 79: 1417-1419. doi: 10.1063/1.1394717
  • [34] Singh Pratiyush A, Krishnamoorthy S, Vishnu Solanke S, Zhanbo X, Muralidharan R et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Applied Physics Letters 2017; 110: 1-6. doi: 10.1063/1.4984904

Ayrıntılar

Birincil Dil İngilizce
Konular Fizik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Fatih AKYOL Bu kişi benim
Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Enginnering, Yıldız Technical University, İstanbul, Turkey
Türkiye

Yayımlanma Tarihi 28 Haziran 2021
Yayınlandığı Sayı Yıl 2021, Cilt 45, Sayı 3

Kaynak Göster

Bibtex @araştırma makalesi { tbtkphysics964112, journal = {Turkish Journal of Physics}, issn = {1300-0101}, eissn = {1303-6122}, address = {}, publisher = {TÜBİTAK}, year = {2021}, volume = {45}, number = {3}, pages = {169 - 177}, title = {Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors}, key = {cite}, author = {Akyol, Fatih} }
APA Akyol, F. (2021). Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors . Turkish Journal of Physics , 45 (3) , 169-177 . Retrieved from https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964112
MLA Akyol, F. "Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors" . Turkish Journal of Physics 45 (2021 ): 169-177 <https://dergipark.org.tr/tr/pub/tbtkphysics/issue/63651/964112>
Chicago Akyol, F. "Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors". Turkish Journal of Physics 45 (2021 ): 169-177
RIS TY - JOUR T1 - Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors AU - Fatih Akyol Y1 - 2021 PY - 2021 N1 - DO - T2 - Turkish Journal of Physics JF - Journal JO - JOR SP - 169 EP - 177 VL - 45 IS - 3 SN - 1300-0101-1303-6122 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Physics Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors %A Fatih Akyol %T Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors %D 2021 %J Turkish Journal of Physics %P 1300-0101-1303-6122 %V 45 %N 3 %R %U
ISNAD Akyol, Fatih . "Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors". Turkish Journal of Physics 45 / 3 (Haziran 2021): 169-177 .
AMA Akyol F. Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors. Turkish Journal of Physics. 2021; 45(3): 169-177.
Vancouver Akyol F. Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors. Turkish Journal of Physics. 2021; 45(3): 169-177.
IEEE F. Akyol , "Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors", Turkish Journal of Physics, c. 45, sayı. 3, ss. 169-177, Haz. 2021