Research Article
BibTex RIS Cite

5–Fluorouracil: Computational Studies of Tautomers and NMR Properties

Year 2017, Volume: 1 Issue: 1, 27 - 34, 15.06.2017

Abstract

Chemical
computations were performed to investigate stabilities and properties for
tautomers of 5–fluorouracil (5FU). In addition to optimized properties, nuclear
magnetic resonance (NMR) parameters were calculated for all atoms of the stabilized
structures. Di–keto form of 5FU is the most stable structure and keto–enol and
di–enol structural forms are tautomeric structures. According to the results, the
polar and non-polar solvents media and tautomeric forms are both important in
characterizing 5FU structures.




References

  • 1. L. Fallon, The crystal and molecular structure of 5-fluorouracil, Acta Crystallographica Section B 29 (1973) 2549–2556. 2. A. González-Sarrías, J. Tomé-Carneiro, A. Bellesia, F.A. Tomás-Barberán, J.C. Espín, The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells, Food & Function 6 (2015) 1460–1469. 3. S.S. Saneeymehri, K.R. Markey, A. Mahipal, Paradoxical effect of capecitabine in 5-fluorouracil-induced cardiotoxicity: A case vignette and literature review, Journal of Oncology Pharmacy Practice 22 (2016) 552-555. 4. M. Malińska, P. Krzeczyński, E. Czerniec-Michalik, K. Trzcińska, P. Cmoch, A. Kutner, K. Woźniak, Crystal structure and tautomerism of capecitabine, Journal of Pharmaceutical Sciences 103 (2014) 587–593. 5. T. Lukmanov, S.P. Ivanov, E.M. Khamitov, S.L. Khursan, Relative stability of keto-enol tautomers in 5, 6-substituted uracils: Ab initio, DFT and PCM study, Computational and Theoretical Chemistry 1023 (2013) 38–45. 6. M. Monajjemi, B. Honarparvar, H. Monajemi, Investigation of NQR parameters on the tetrazole-azide tautomeric equilibria: a DFT study, Journal of the Mexican Chemical Society 50 (2006) 143–148. 7. N.R. Jena, A.E. Mark, P.C. Mishra, Does tautomerization of FapyG influence its mutagenicity?, Chemphyschem 15 (2014) 1779–1784. 8. D. Gur, L.J. Shimon, Crystal structure of disodium 2-amino-6-oxo-6, 7-dihydro-1H-purine-1, 7-diide heptahydrate, Acta Crystallographica E 71 (2015) 281–283. 9. M. Mirzaei, H.R. Kalhor, N.L. Hadipour, Covalent hybridization of CNT by thymine and uracil: A computational study, Journal of Molecular Modeling 17 (2011) 695–699. 10. N. Markova, V. Enchev, I. Timtcheva, Oxo−hydroxy tautomerism of 5-fluorouracil: Water-assisted proton transfer, The Journal of Physical Chemistry A 109 (2005) 1981–1988. 11. T. Marino, N. Russo, M. Toscano, Density functional study of oxo-hydroxy tautomerism of 5-fluorouracil, International Journal of Quantum Chemistry 62 (1997) 489–494. 12. X. Guo, Y. Zhao, Z. Cao, Ab initio study on ultrafast excited-state decay of allopurinol keto-N9H tautomer from gas phase to aqueous solution. The Journal of Physical Chemistry A 118 (2014) 9013–9020. 13. S. Ortiz, M.A. Palafox, V.K. Rastogi, T. Akitsu, I.H. Joe, S. Kumar, Simulation of a tetramer form of 5-chlorouracil: The vibrational spectra and molecular structure in the isolated and in the solid state by using DFT calculations, Spectrochimica Acta Part A 110 (2013) 404-418. 14. T.M. El-Gogary, A.M. El-Nahas, Origin of reverse stability of diphosphouracil tautomers compared to their analogue uracil: DFT and ab initio study, Journal of Molecular Structure: THEOCHEM 851 (2008) 54–62. 15. A.F. Jalbout, B. Trzaskowski, Y. Xia, Y. Li, X. Hu, H. Li, A. El-Nahas, L. Adamowicz, Structures, stabilities and tautomerizations of uracil and diphosphouracil tautomers, Chemical Physics 332 (2007) 152–161. 16. A. Buda, A. Syguła, MNDO study of the tautomers of nucleic bases: Part I. Uracil, thymine and cytosine, Journal of Molecular Structure: THEOCHEM 92 (1983) 255–265. 17. M.J. Scanlan, I.H. Hillier, Accurate prediction of the relative energies of the six tautomers of uracil, Chemical Physics Letters 98 (1983) 545–547. 18. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian 98 Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998. 19. S.K. Wolff, T. Ziegler, Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling, The Journal of Chemical Physics 109 (1998) 895–905. 20. M. Mirzaei, N.L. Hadipour, Study of hydrogen bonds in 1-methyluracil by DFT calculations of oxygen, nitrogen, and hydrogen quadrupole coupling constants and isotropic chemical shifts, Chemical Physics Letters 438 (2007) 304–307. 21. R.S. Drago, Physical Methods for Chemists. Saunders College Publishing, 2nd Ed., New York, 1992. 22. M. Mirzaei, N.L. Hadipour, An investigation of hydrogen-bonding effects on the nitrogen and hydrogen electric field gradient and chemical shielding tensors in the 9-methyladenine real crystalline structure: A density functional theory study, The Journal of Physical Chemistry A 110 (2006) 4833–4838. 23. M. Rafiee, M. Javaheri, A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters, Molecular Biology Research Communications 4 (2015) 151–159.
Year 2017, Volume: 1 Issue: 1, 27 - 34, 15.06.2017

Abstract

References

  • 1. L. Fallon, The crystal and molecular structure of 5-fluorouracil, Acta Crystallographica Section B 29 (1973) 2549–2556. 2. A. González-Sarrías, J. Tomé-Carneiro, A. Bellesia, F.A. Tomás-Barberán, J.C. Espín, The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells, Food & Function 6 (2015) 1460–1469. 3. S.S. Saneeymehri, K.R. Markey, A. Mahipal, Paradoxical effect of capecitabine in 5-fluorouracil-induced cardiotoxicity: A case vignette and literature review, Journal of Oncology Pharmacy Practice 22 (2016) 552-555. 4. M. Malińska, P. Krzeczyński, E. Czerniec-Michalik, K. Trzcińska, P. Cmoch, A. Kutner, K. Woźniak, Crystal structure and tautomerism of capecitabine, Journal of Pharmaceutical Sciences 103 (2014) 587–593. 5. T. Lukmanov, S.P. Ivanov, E.M. Khamitov, S.L. Khursan, Relative stability of keto-enol tautomers in 5, 6-substituted uracils: Ab initio, DFT and PCM study, Computational and Theoretical Chemistry 1023 (2013) 38–45. 6. M. Monajjemi, B. Honarparvar, H. Monajemi, Investigation of NQR parameters on the tetrazole-azide tautomeric equilibria: a DFT study, Journal of the Mexican Chemical Society 50 (2006) 143–148. 7. N.R. Jena, A.E. Mark, P.C. Mishra, Does tautomerization of FapyG influence its mutagenicity?, Chemphyschem 15 (2014) 1779–1784. 8. D. Gur, L.J. Shimon, Crystal structure of disodium 2-amino-6-oxo-6, 7-dihydro-1H-purine-1, 7-diide heptahydrate, Acta Crystallographica E 71 (2015) 281–283. 9. M. Mirzaei, H.R. Kalhor, N.L. Hadipour, Covalent hybridization of CNT by thymine and uracil: A computational study, Journal of Molecular Modeling 17 (2011) 695–699. 10. N. Markova, V. Enchev, I. Timtcheva, Oxo−hydroxy tautomerism of 5-fluorouracil: Water-assisted proton transfer, The Journal of Physical Chemistry A 109 (2005) 1981–1988. 11. T. Marino, N. Russo, M. Toscano, Density functional study of oxo-hydroxy tautomerism of 5-fluorouracil, International Journal of Quantum Chemistry 62 (1997) 489–494. 12. X. Guo, Y. Zhao, Z. Cao, Ab initio study on ultrafast excited-state decay of allopurinol keto-N9H tautomer from gas phase to aqueous solution. The Journal of Physical Chemistry A 118 (2014) 9013–9020. 13. S. Ortiz, M.A. Palafox, V.K. Rastogi, T. Akitsu, I.H. Joe, S. Kumar, Simulation of a tetramer form of 5-chlorouracil: The vibrational spectra and molecular structure in the isolated and in the solid state by using DFT calculations, Spectrochimica Acta Part A 110 (2013) 404-418. 14. T.M. El-Gogary, A.M. El-Nahas, Origin of reverse stability of diphosphouracil tautomers compared to their analogue uracil: DFT and ab initio study, Journal of Molecular Structure: THEOCHEM 851 (2008) 54–62. 15. A.F. Jalbout, B. Trzaskowski, Y. Xia, Y. Li, X. Hu, H. Li, A. El-Nahas, L. Adamowicz, Structures, stabilities and tautomerizations of uracil and diphosphouracil tautomers, Chemical Physics 332 (2007) 152–161. 16. A. Buda, A. Syguła, MNDO study of the tautomers of nucleic bases: Part I. Uracil, thymine and cytosine, Journal of Molecular Structure: THEOCHEM 92 (1983) 255–265. 17. M.J. Scanlan, I.H. Hillier, Accurate prediction of the relative energies of the six tautomers of uracil, Chemical Physics Letters 98 (1983) 545–547. 18. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian 98 Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998. 19. S.K. Wolff, T. Ziegler, Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling, The Journal of Chemical Physics 109 (1998) 895–905. 20. M. Mirzaei, N.L. Hadipour, Study of hydrogen bonds in 1-methyluracil by DFT calculations of oxygen, nitrogen, and hydrogen quadrupole coupling constants and isotropic chemical shifts, Chemical Physics Letters 438 (2007) 304–307. 21. R.S. Drago, Physical Methods for Chemists. Saunders College Publishing, 2nd Ed., New York, 1992. 22. M. Mirzaei, N.L. Hadipour, An investigation of hydrogen-bonding effects on the nitrogen and hydrogen electric field gradient and chemical shielding tensors in the 9-methyladenine real crystalline structure: A density functional theory study, The Journal of Physical Chemistry A 110 (2006) 4833–4838. 23. M. Rafiee, M. Javaheri, A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters, Molecular Biology Research Communications 4 (2015) 151–159.
There are 1 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Article
Authors

Mahmoud Mırzaeı

Publication Date June 15, 2017
Submission Date May 4, 2017
Published in Issue Year 2017 Volume: 1 Issue: 1

Cite

APA Mırzaeı, M. (2017). 5–Fluorouracil: Computational Studies of Tautomers and NMR Properties. Turkish Computational and Theoretical Chemistry, 1(1), 27-34.
AMA Mırzaeı M. 5–Fluorouracil: Computational Studies of Tautomers and NMR Properties. Turkish Comp Theo Chem (TC&TC). June 2017;1(1):27-34.
Chicago Mırzaeı, Mahmoud. “5–Fluorouracil: Computational Studies of Tautomers and NMR Properties”. Turkish Computational and Theoretical Chemistry 1, no. 1 (June 2017): 27-34.
EndNote Mırzaeı M (June 1, 2017) 5–Fluorouracil: Computational Studies of Tautomers and NMR Properties. Turkish Computational and Theoretical Chemistry 1 1 27–34.
IEEE M. Mırzaeı, “5–Fluorouracil: Computational Studies of Tautomers and NMR Properties”, Turkish Comp Theo Chem (TC&TC), vol. 1, no. 1, pp. 27–34, 2017.
ISNAD Mırzaeı, Mahmoud. “5–Fluorouracil: Computational Studies of Tautomers and NMR Properties”. Turkish Computational and Theoretical Chemistry 1/1 (June 2017), 27-34.
JAMA Mırzaeı M. 5–Fluorouracil: Computational Studies of Tautomers and NMR Properties. Turkish Comp Theo Chem (TC&TC). 2017;1:27–34.
MLA Mırzaeı, Mahmoud. “5–Fluorouracil: Computational Studies of Tautomers and NMR Properties”. Turkish Computational and Theoretical Chemistry, vol. 1, no. 1, 2017, pp. 27-34.
Vancouver Mırzaeı M. 5–Fluorouracil: Computational Studies of Tautomers and NMR Properties. Turkish Comp Theo Chem (TC&TC). 2017;1(1):27-34.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)