Research Article
BibTex RIS Cite

Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil

Year 2017, Volume: 1 Issue: 2, 6 - 12, 15.12.2017

Abstract



We have performed density functional
theory (DFT) calculations to investigate formation possibilities and properties
of chitosan–curcumin (Chit–Cur) nanorings for containing fluorouracil (FU)
anticancer drug. In this case, first, we have optimized all individual
structures, then; we have constructed nanorings by the covalent attachments of
Chit–Cur counterparts. To this aim, three complexes including FU–Chit2–Cur2,
FU–Chit4–Cur2 and FU–Chit6–Cur2 have been constructed by physically locating FU
inside the nanorings. The atomic and molecular scales results in isolated gas
phase and water solvated systems indicated that the FU–Chit2–Cur2 complex could
be expected as a good container for the FU anticancer drug. 

References

  • 1. M.A. Safwat, G.M. Soliman, D. Sayed, M.A. Attia, Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. International Journal of Pharmaceutics 513 (2016) 648-658. 2. J.K. Kim, K.A. Kang, M.J. Piao, Y.S. Ryu, X. Han, et al., Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells. Environmental Toxicology and Pharmacology 44 (2016) 128-133. 3. M. Mirzaei, Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. International Journal of Nano Dimension 3 (2013) 175-179. 4. M.M. El-Hammadi, Á.V. Delgado, C. Melguizo, J.C. Prados, J.L. Arias, Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. International Journal of Pharmaceutics 516 (2017) 61-70. 5. J.R. Lakkakula, T. Matshaya, R.W.M. Krause, Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Materials Science and Engineering: C 70 (2017) 169-177. 6. D.J. Fu, Y. Jin, M.Q. Xie, Y.J. Ye, D.D. Qin, et al., Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity. Chinese Chemical Letters 25 (2014) 1435-1440. 7. C. Gu, V. Le, M. Lang, J. Liu, Preparation of polysaccharide derivates chitosan-graft-poly(ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids and Surfaces B 116 (2014) 745-750. 8. A. Anitha, N. Deepa, K.P. Chennazhi, Vinoth-Kumar Lakshmanan, R. Jayakumar, Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochimica et Biophysica Acta – BBA 1840 (2014) 2730-2743. 9. S.M. Masloub, M.H. Elmalahy, D. Sabry, W.S. Mohamed, S.H. Ahmed, Comparative evaluation of PLGA nanoparticle delivery system for 5-fluorouracil and curcumin on squamous cell carcinoma. Archives of Oral Biology 64 (2016) 1-10. 10. J. Chen, Z.M. He, F.L. Wang, Z.S. Zhang, X.Z. Liu, et al., Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. European Journal of Pharmacology 772 (2016) 33-42. 11. Y.O. Jeon, J.S. Lee, H.G. Lee, Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids and Surfaces B 147 (2016) 224-233. 12. J. Li, G.H. Shin, W. Lee, X. Chen, H.J. Park, Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids 56 (2016) 41-49. 13. Si.B. Subramanian, A.P. Francis, T. Devasena, Chitosan–starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydrate Polymers 114 (2014) 170-178. 14. S.H. Chang, H.T.V. Lin, G.J. Wu, G.J. Tsai, pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate Polymers 134 (2015) 74-81. 15. L. Chen, G. Bai, S. Yang, R. Yang, G. Zhao, et al., Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International 62 (2014) 1147-1153. 16. M. Azad, J. Moreno, E. Bilgili, R. Davé, Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size. International Journal of Pharmaceutics 513 (2016) 319-331. 17. R. Gong, G. Chen, Preparation and application of functionalized nano drug carriers. Saudi Pharmaceutical Journal 24 (2016) 254-257. 18. A. Mokhtarzadeh, M. Tabarzad, J. Ranjbari, M. de la Guardia, M. Hejazi, M. Ramezani, Aptamers as smart ligands for nano-carriers targeting. TrAC Trends in Analytical Chemistry 82 (2016) 316-327. 19. G. Perret, P. Ginet, M.C. Tarhan, A. Baccouche, T. Lacornerie, et al., Nano systems and devices for applications in biology and nanotechnology. Solid-State Electronics 115 (2016) 66-73. 20. D.M. Holland, M.K. Borg, D.A. Lockerby, J.M. Reese, Enhancing nano-scale computational fluid dynamics with molecular pre-simulations: Unsteady problems and design optimization. Computers & Fluids 115 (2015) 46-53. 21. A. Bodaghi, M. Mirzaei, A. Seif, M. Giahi, A computational NMR study on zigzag aluminum nitride nanotubes. Physica E 41 (2008) 209-212. 22. M. Mirzaei, N.L. Hadipour, A. Seif, M. Giahi, Density functional study of zigzag BN nanotubes with equivalent ends. Physica E 40 (2008) 3060-3063. 23. P. Pyykkö, Spectroscopic nuclear quadrupole moments. Molecular Physics 99 (2001) 1617–1629. 24. Z. Bagheri, M. Mirzaei, N.L. Hadipour, M.R. Abolhassani, Density functional theory study of boron nitride nanotubes: Calculations of the N-14 and B-11 nuclear quadrupole resonance parameters. Journal of Computational and Theoretical Nanoscience 5 (2008) 614-618. 25. M. Mirzaei, N.L. Hadipour, A computational NQR study on the hydrogen-bonded lattice of cytosine-5-acetic acid. Journal of Computational Chemistry 29 (2008) 832-838. 26. M. Mirzaei, F. Elmi, N.L. Hadipour, A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and2H nuclear quadruole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: A density functional theory study. The Journal of Physical Chemistry B 110 (2006) 10991-10996. 27. T.P. Das, E.L. Han, Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York, 1958. 28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian 09, Revision A.01, Gaussian Inc.: Wallingford, CT, 2009.
Year 2017, Volume: 1 Issue: 2, 6 - 12, 15.12.2017

Abstract

References

  • 1. M.A. Safwat, G.M. Soliman, D. Sayed, M.A. Attia, Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. International Journal of Pharmaceutics 513 (2016) 648-658. 2. J.K. Kim, K.A. Kang, M.J. Piao, Y.S. Ryu, X. Han, et al., Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells. Environmental Toxicology and Pharmacology 44 (2016) 128-133. 3. M. Mirzaei, Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. International Journal of Nano Dimension 3 (2013) 175-179. 4. M.M. El-Hammadi, Á.V. Delgado, C. Melguizo, J.C. Prados, J.L. Arias, Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. International Journal of Pharmaceutics 516 (2017) 61-70. 5. J.R. Lakkakula, T. Matshaya, R.W.M. Krause, Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Materials Science and Engineering: C 70 (2017) 169-177. 6. D.J. Fu, Y. Jin, M.Q. Xie, Y.J. Ye, D.D. Qin, et al., Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity. Chinese Chemical Letters 25 (2014) 1435-1440. 7. C. Gu, V. Le, M. Lang, J. Liu, Preparation of polysaccharide derivates chitosan-graft-poly(ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids and Surfaces B 116 (2014) 745-750. 8. A. Anitha, N. Deepa, K.P. Chennazhi, Vinoth-Kumar Lakshmanan, R. Jayakumar, Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochimica et Biophysica Acta – BBA 1840 (2014) 2730-2743. 9. S.M. Masloub, M.H. Elmalahy, D. Sabry, W.S. Mohamed, S.H. Ahmed, Comparative evaluation of PLGA nanoparticle delivery system for 5-fluorouracil and curcumin on squamous cell carcinoma. Archives of Oral Biology 64 (2016) 1-10. 10. J. Chen, Z.M. He, F.L. Wang, Z.S. Zhang, X.Z. Liu, et al., Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. European Journal of Pharmacology 772 (2016) 33-42. 11. Y.O. Jeon, J.S. Lee, H.G. Lee, Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid). Colloids and Surfaces B 147 (2016) 224-233. 12. J. Li, G.H. Shin, W. Lee, X. Chen, H.J. Park, Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocolloids 56 (2016) 41-49. 13. Si.B. Subramanian, A.P. Francis, T. Devasena, Chitosan–starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydrate Polymers 114 (2014) 170-178. 14. S.H. Chang, H.T.V. Lin, G.J. Wu, G.J. Tsai, pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate Polymers 134 (2015) 74-81. 15. L. Chen, G. Bai, S. Yang, R. Yang, G. Zhao, et al., Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Research International 62 (2014) 1147-1153. 16. M. Azad, J. Moreno, E. Bilgili, R. Davé, Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size. International Journal of Pharmaceutics 513 (2016) 319-331. 17. R. Gong, G. Chen, Preparation and application of functionalized nano drug carriers. Saudi Pharmaceutical Journal 24 (2016) 254-257. 18. A. Mokhtarzadeh, M. Tabarzad, J. Ranjbari, M. de la Guardia, M. Hejazi, M. Ramezani, Aptamers as smart ligands for nano-carriers targeting. TrAC Trends in Analytical Chemistry 82 (2016) 316-327. 19. G. Perret, P. Ginet, M.C. Tarhan, A. Baccouche, T. Lacornerie, et al., Nano systems and devices for applications in biology and nanotechnology. Solid-State Electronics 115 (2016) 66-73. 20. D.M. Holland, M.K. Borg, D.A. Lockerby, J.M. Reese, Enhancing nano-scale computational fluid dynamics with molecular pre-simulations: Unsteady problems and design optimization. Computers & Fluids 115 (2015) 46-53. 21. A. Bodaghi, M. Mirzaei, A. Seif, M. Giahi, A computational NMR study on zigzag aluminum nitride nanotubes. Physica E 41 (2008) 209-212. 22. M. Mirzaei, N.L. Hadipour, A. Seif, M. Giahi, Density functional study of zigzag BN nanotubes with equivalent ends. Physica E 40 (2008) 3060-3063. 23. P. Pyykkö, Spectroscopic nuclear quadrupole moments. Molecular Physics 99 (2001) 1617–1629. 24. Z. Bagheri, M. Mirzaei, N.L. Hadipour, M.R. Abolhassani, Density functional theory study of boron nitride nanotubes: Calculations of the N-14 and B-11 nuclear quadrupole resonance parameters. Journal of Computational and Theoretical Nanoscience 5 (2008) 614-618. 25. M. Mirzaei, N.L. Hadipour, A computational NQR study on the hydrogen-bonded lattice of cytosine-5-acetic acid. Journal of Computational Chemistry 29 (2008) 832-838. 26. M. Mirzaei, F. Elmi, N.L. Hadipour, A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and2H nuclear quadruole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: A density functional theory study. The Journal of Physical Chemistry B 110 (2006) 10991-10996. 27. T.P. Das, E.L. Han, Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York, 1958. 28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian 09, Revision A.01, Gaussian Inc.: Wallingford, CT, 2009.
There are 1 citations in total.

Details

Journal Section Research Article
Authors

H Yousefvand This is me

Mahmoud Mirzaei

Majid Tabbakhian This is me

Publication Date December 15, 2017
Submission Date May 6, 2017
Published in Issue Year 2017 Volume: 1 Issue: 2

Cite

APA Yousefvand, H., Mirzaei, M., & Tabbakhian, M. (2017). Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil. Turkish Computational and Theoretical Chemistry, 1(2), 6-12.
AMA Yousefvand H, Mirzaei M, Tabbakhian M. Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil. Turkish Comp Theo Chem (TC&TC). December 2017;1(2):6-12.
Chicago Yousefvand, H, Mahmoud Mirzaei, and Majid Tabbakhian. “Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil”. Turkish Computational and Theoretical Chemistry 1, no. 2 (December 2017): 6-12.
EndNote Yousefvand H, Mirzaei M, Tabbakhian M (December 1, 2017) Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil. Turkish Computational and Theoretical Chemistry 1 2 6–12.
IEEE H. Yousefvand, M. Mirzaei, and M. Tabbakhian, “Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil”, Turkish Comp Theo Chem (TC&TC), vol. 1, no. 2, pp. 6–12, 2017.
ISNAD Yousefvand, H et al. “Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil”. Turkish Computational and Theoretical Chemistry 1/2 (December 2017), 6-12.
JAMA Yousefvand H, Mirzaei M, Tabbakhian M. Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil. Turkish Comp Theo Chem (TC&TC). 2017;1:6–12.
MLA Yousefvand, H et al. “Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil”. Turkish Computational and Theoretical Chemistry, vol. 1, no. 2, 2017, pp. 6-12.
Vancouver Yousefvand H, Mirzaei M, Tabbakhian M. Investigating Chitosan–Curcumin Nanorings for Containing Fluorouracil. Turkish Comp Theo Chem (TC&TC). 2017;1(2):6-12.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)