Araştırma Makalesi
BibTex RIS Kaynak Göster

Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer

Yıl 2018, Cilt: 2 Sayı: 2, 49 - 56, 15.12.2018
https://doi.org/10.33435/tcandtc.455456

Öz

The
paper demonstrates theoretical studies of structural, optical and electronic properties of polypyrroll oligomer. 
first-principles calculations are used to investigate the electronic
properties of n-pyrrole oligomers with n = 1–29, and all results were plotted
to determine the optimal number of chains (n). Then, t
ransition energies and oscillator strengths for the electronic
excitation of the first 12 singlet-to-singlet excited states of PPy were
calculated using time-dependent (TD) DFT at the same level. In addition,
optical properties of PPy were studied as theoretically. It was observed that
there is quite compatibility between the calculated and experimental data.
 We think that this systematic study may be useful for the structural analysis, spectroscopic and theoretical properties of other oxime I think that this systematic study may be useful for the structural analysis, optical and theoretical properties of other polymers.



.

Kaynakça

  • [1] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J.Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett. 39 (1977) 1098-1101.
  • [2] C. Li, H. Bai, G.Q. Shi, Conducting polymer nanomaterials: electrosynthesis and applications Chem. Soc. Rev. 38 (2009) 2397-2409.
  • [3] K. M. Coakley, M. D. McGehee, Conjugated Polymer Photovoltaic Cells Chem. Mater. 16 (2004) 4533–4542.
  • [4] R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review Sol. Energy Mater. Sol. Cells 94 (2010) 87–105.
  • [5] P. M. Beaujuge, J. R. Reynolds, Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices Chem. Rev. 110 (2010) 268–320.
  • [6] M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Gas separation membranes: a novel application for conducting polymers Synth. Met. 41 (1991) 1151–1154.
  • [7] S.P. Sitaram, J.O. Stoffer, T.J.O’Keefe, Application of conducting polymers in corrosion protection J. Coat. Technol. 69 (1997) 65–69.
  • [8] P. J. Kulesza, M. Matczak, A. Wolkiewicz, B. Grzybowska, M. Galkowski, M. A. Malik and A. Wieckowski, Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol Electrochim. Acta, 1999, 44, 2131–2137.
  • [9] O. Niwa, T. Tamamura, Polythiophene/polyvinylchloride conducting polymer alloy films and their redox properties Synth. Met. 20 (1987) 235–243.
  • [10] B. Krische, M. Zagorska, The polythiophene paradox Synth. Met. 28 (1989) 263–268.
  • [11] R.J. Waltman, J. Bargon, A.F. Diaz, Electrochemical studies of some conducting polythiophene films J. Am. Chem. Soc. 87 (1983) 1459–1463.
  • [12] U. Salzner, J. Lagowski, P. Pickup, R. Poirier, Comparison of geometries and electronic structures of polyacetylene, polyborole,polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene Synth. Met. 96 (1998) 177–189.
  • [13] J. Gasiorowski, S. Boudiba, K. Hingerl, C. Ulbricht, V. Fattori, F. Tinti, N. Camaioni, R. Menon, S. Schlager, L. Boudida, N. S. Sariciftci, D.A.M. Egbe, Anthracene-containing conjugated polymer showing four optical transitions upon doping: A spectroscopicstudy J. Polym. Sci. Part B Polym. Phys. 52 (2014) 338–346.
  • [14] Y. Liu, S.R. Scully, M.D. McGehee, J. Liu, C.K. Luscombe, J.M.J. Frechet, S.E. Shaheen, D.S. Ginley, Dependence of band offset and open-circuit voltage on the interfacial interaction between tio2 and carboxylatedpolythiophenes J. Phys. Chem. B 110 (2006) 3257–3261.
  • [15] L. Pandey, C. Doiron, J.S. Sears, J.-L. Bredas, Lowest excited states and optical absorption spectra of donor-acceptor copolymersfor organic photovoltaics: A new picture emerging from tuned long-range corrected density functionals Phys. Chem. Chem. Phys. 14 (2012) 14243–14248.
  • [16] F.A. Arroyave, C.A. Richard, J.R. Reynolds, Efficient synthesis of benzo[1,2-b:6,5-b]dithiophene-4,5-dione (bdtd) and its chemical transformations into precursors for π-conjugated materials Org. Lett. 14 (2012) 6138–6141.
  • [17] L. Wang, E. Puodziukynaite, E.M. Grumstrup, A.C. Brown, S. Keinan, K.S. Schanze, J.R. Reynolds, J.M. Papanikolas, Ultrafast formation of a long-lived charge-separated state in a ru-loaded poly(3-hexylthiophene) lightharvesting polymer J. Phys. Chem. C 4 (2013) 2269–2273.
  • [18] L.A. Estrada, J.J. Deininger, G.D. Kamenov, J.R. Reynolds, Direct (hetero)arylation polymerization: An effective route to 3,4-propylenedioxythiophene-based polymers with low residual metal content ACS Macro Lett. 2 (2013) 869–873.
  • [19] P.M. Beaujuge, S.V. Vasilyeva, D.Y. Liu, S. Ellinger, T.D. McCarley, J.R. Reynolds, Structure-performance correlations in spray-processable green dioxythiophene-benzothiadiazole donoracceptor polymer electrochromes Chem. Mater. 24 (2012) 255–268.
  • [20] V. Shaktawat, N. Jain, R. Saxena, N.S. Saxena, T.P. Sharma, Electrical conductivity and optical band gap studies of polypyrrole doped with different acids J. Opt.elect. and Advan. Matr. 9 (2007) 2130-2132.
  • [21] B.S. Chakrabarty, Evaluation of optical constants of wide band gap cadmium doped polypyrrole, Intr.J. Research in Eng. & Tech. 2 (2014) 37-44.
  • [22] M. Bouzzine, G. Salgado-Moran, M. Hamidi, M. Bouachrine, A.G. Pacheco, D. Glossman-Mitnik, DFT Study of Polythiophene Energy Band Gap and Substitution Effects Journal of Chemistry 296386 (2015) 1-12.
  • [23] I. Rabis, I. Hamerton, B.J. Howlin, P.J.S. Foot, Theoretical studies of conducting polymers based on substituted polypyrroles Computational and Theoretical Polymer Science 8 (1998) 265-271.
  • [24] F. Wasim, T. Mahmood, K. Ayub, An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases Phys.Chem.Chem.Phys. 18 (2016) 19236.
  • [25] Y. Dai, S. Chowdhury, E. Blaisten-Barojas, Density functional theory study of the structure and energetics of negatively charged oligopyrroles International Journal of Quantum Chemistry 111 (2011) 2295-2305.
  • [26] A.D. Becke, Densityfunctional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 (1993) 5648.
  • [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01, (Gaussian, Inc., Wallingford, CT, 2004).
  • [28] R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, GaussView, Version 3.07, Semichem Inc., Shawnee Mission, KS, 2003.
  • [29] N. Ozbek, S. Alyar, B.K. Memmi, A.B. Gündüzalp, Z. Bahçeci, H. Alyar, Synthesis, characterization, computational studies, antimicrobial activities and carbonic anhydrase inhibitor effects of 2-hydroxy acetophenone-N-methyl p-toluenesulfonylhydrazone and its Co(II), Pd(II), Pt(II) complexes J. Mol. Struct. 1127 (2017) 437-448.
  • [30] B.S. Chakrabarty, Evaluation of optical constants of wide band gap cadmium doped polypyrrole, International Journal of Research in Engineering & Technology 2 (2014) 37-44.
Yıl 2018, Cilt: 2 Sayı: 2, 49 - 56, 15.12.2018
https://doi.org/10.33435/tcandtc.455456

Öz

Kaynakça

  • [1] C.K. Chiang, C.R. Fincher, Y.W. Park, A.J.Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene, Phys. Rev. Lett. 39 (1977) 1098-1101.
  • [2] C. Li, H. Bai, G.Q. Shi, Conducting polymer nanomaterials: electrosynthesis and applications Chem. Soc. Rev. 38 (2009) 2397-2409.
  • [3] K. M. Coakley, M. D. McGehee, Conjugated Polymer Photovoltaic Cells Chem. Mater. 16 (2004) 4533–4542.
  • [4] R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review Sol. Energy Mater. Sol. Cells 94 (2010) 87–105.
  • [5] P. M. Beaujuge, J. R. Reynolds, Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices Chem. Rev. 110 (2010) 268–320.
  • [6] M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Gas separation membranes: a novel application for conducting polymers Synth. Met. 41 (1991) 1151–1154.
  • [7] S.P. Sitaram, J.O. Stoffer, T.J.O’Keefe, Application of conducting polymers in corrosion protection J. Coat. Technol. 69 (1997) 65–69.
  • [8] P. J. Kulesza, M. Matczak, A. Wolkiewicz, B. Grzybowska, M. Galkowski, M. A. Malik and A. Wieckowski, Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol Electrochim. Acta, 1999, 44, 2131–2137.
  • [9] O. Niwa, T. Tamamura, Polythiophene/polyvinylchloride conducting polymer alloy films and their redox properties Synth. Met. 20 (1987) 235–243.
  • [10] B. Krische, M. Zagorska, The polythiophene paradox Synth. Met. 28 (1989) 263–268.
  • [11] R.J. Waltman, J. Bargon, A.F. Diaz, Electrochemical studies of some conducting polythiophene films J. Am. Chem. Soc. 87 (1983) 1459–1463.
  • [12] U. Salzner, J. Lagowski, P. Pickup, R. Poirier, Comparison of geometries and electronic structures of polyacetylene, polyborole,polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene Synth. Met. 96 (1998) 177–189.
  • [13] J. Gasiorowski, S. Boudiba, K. Hingerl, C. Ulbricht, V. Fattori, F. Tinti, N. Camaioni, R. Menon, S. Schlager, L. Boudida, N. S. Sariciftci, D.A.M. Egbe, Anthracene-containing conjugated polymer showing four optical transitions upon doping: A spectroscopicstudy J. Polym. Sci. Part B Polym. Phys. 52 (2014) 338–346.
  • [14] Y. Liu, S.R. Scully, M.D. McGehee, J. Liu, C.K. Luscombe, J.M.J. Frechet, S.E. Shaheen, D.S. Ginley, Dependence of band offset and open-circuit voltage on the interfacial interaction between tio2 and carboxylatedpolythiophenes J. Phys. Chem. B 110 (2006) 3257–3261.
  • [15] L. Pandey, C. Doiron, J.S. Sears, J.-L. Bredas, Lowest excited states and optical absorption spectra of donor-acceptor copolymersfor organic photovoltaics: A new picture emerging from tuned long-range corrected density functionals Phys. Chem. Chem. Phys. 14 (2012) 14243–14248.
  • [16] F.A. Arroyave, C.A. Richard, J.R. Reynolds, Efficient synthesis of benzo[1,2-b:6,5-b]dithiophene-4,5-dione (bdtd) and its chemical transformations into precursors for π-conjugated materials Org. Lett. 14 (2012) 6138–6141.
  • [17] L. Wang, E. Puodziukynaite, E.M. Grumstrup, A.C. Brown, S. Keinan, K.S. Schanze, J.R. Reynolds, J.M. Papanikolas, Ultrafast formation of a long-lived charge-separated state in a ru-loaded poly(3-hexylthiophene) lightharvesting polymer J. Phys. Chem. C 4 (2013) 2269–2273.
  • [18] L.A. Estrada, J.J. Deininger, G.D. Kamenov, J.R. Reynolds, Direct (hetero)arylation polymerization: An effective route to 3,4-propylenedioxythiophene-based polymers with low residual metal content ACS Macro Lett. 2 (2013) 869–873.
  • [19] P.M. Beaujuge, S.V. Vasilyeva, D.Y. Liu, S. Ellinger, T.D. McCarley, J.R. Reynolds, Structure-performance correlations in spray-processable green dioxythiophene-benzothiadiazole donoracceptor polymer electrochromes Chem. Mater. 24 (2012) 255–268.
  • [20] V. Shaktawat, N. Jain, R. Saxena, N.S. Saxena, T.P. Sharma, Electrical conductivity and optical band gap studies of polypyrrole doped with different acids J. Opt.elect. and Advan. Matr. 9 (2007) 2130-2132.
  • [21] B.S. Chakrabarty, Evaluation of optical constants of wide band gap cadmium doped polypyrrole, Intr.J. Research in Eng. & Tech. 2 (2014) 37-44.
  • [22] M. Bouzzine, G. Salgado-Moran, M. Hamidi, M. Bouachrine, A.G. Pacheco, D. Glossman-Mitnik, DFT Study of Polythiophene Energy Band Gap and Substitution Effects Journal of Chemistry 296386 (2015) 1-12.
  • [23] I. Rabis, I. Hamerton, B.J. Howlin, P.J.S. Foot, Theoretical studies of conducting polymers based on substituted polypyrroles Computational and Theoretical Polymer Science 8 (1998) 265-271.
  • [24] F. Wasim, T. Mahmood, K. Ayub, An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases Phys.Chem.Chem.Phys. 18 (2016) 19236.
  • [25] Y. Dai, S. Chowdhury, E. Blaisten-Barojas, Density functional theory study of the structure and energetics of negatively charged oligopyrroles International Journal of Quantum Chemistry 111 (2011) 2295-2305.
  • [26] A.D. Becke, Densityfunctional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 (1993) 5648.
  • [27] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01, (Gaussian, Inc., Wallingford, CT, 2004).
  • [28] R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, GaussView, Version 3.07, Semichem Inc., Shawnee Mission, KS, 2003.
  • [29] N. Ozbek, S. Alyar, B.K. Memmi, A.B. Gündüzalp, Z. Bahçeci, H. Alyar, Synthesis, characterization, computational studies, antimicrobial activities and carbonic anhydrase inhibitor effects of 2-hydroxy acetophenone-N-methyl p-toluenesulfonylhydrazone and its Co(II), Pd(II), Pt(II) complexes J. Mol. Struct. 1127 (2017) 437-448.
  • [30] B.S. Chakrabarty, Evaluation of optical constants of wide band gap cadmium doped polypyrrole, International Journal of Research in Engineering & Technology 2 (2014) 37-44.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Aslı Kaya

Yayımlanma Tarihi 15 Aralık 2018
Gönderilme Tarihi 28 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 2 Sayı: 2

Kaynak Göster

APA Kaya, A. (2018). Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer. Turkish Computational and Theoretical Chemistry, 2(2), 49-56. https://doi.org/10.33435/tcandtc.455456
AMA Kaya A. Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer. Turkish Comp Theo Chem (TC&TC). Aralık 2018;2(2):49-56. doi:10.33435/tcandtc.455456
Chicago Kaya, Aslı. “Theoretical Studies of Structural, Optic and Electronic Properties of Polypyrrole (PPy) Oligomer”. Turkish Computational and Theoretical Chemistry 2, sy. 2 (Aralık 2018): 49-56. https://doi.org/10.33435/tcandtc.455456.
EndNote Kaya A (01 Aralık 2018) Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer. Turkish Computational and Theoretical Chemistry 2 2 49–56.
IEEE A. Kaya, “Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer”, Turkish Comp Theo Chem (TC&TC), c. 2, sy. 2, ss. 49–56, 2018, doi: 10.33435/tcandtc.455456.
ISNAD Kaya, Aslı. “Theoretical Studies of Structural, Optic and Electronic Properties of Polypyrrole (PPy) Oligomer”. Turkish Computational and Theoretical Chemistry 2/2 (Aralık 2018), 49-56. https://doi.org/10.33435/tcandtc.455456.
JAMA Kaya A. Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer. Turkish Comp Theo Chem (TC&TC). 2018;2:49–56.
MLA Kaya, Aslı. “Theoretical Studies of Structural, Optic and Electronic Properties of Polypyrrole (PPy) Oligomer”. Turkish Computational and Theoretical Chemistry, c. 2, sy. 2, 2018, ss. 49-56, doi:10.33435/tcandtc.455456.
Vancouver Kaya A. Theoretical studies of structural, optic and electronic properties of polypyrrole (PPy) oligomer. Turkish Comp Theo Chem (TC&TC). 2018;2(2):49-56.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)