Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 1, 5 - 16, 15.06.2019
https://doi.org/10.33435/tcandtc.457472

Abstract

References

  • . Rane, R.A.; Telekar, V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2010, 20, 5681-5685.2. Konieczny, M.T.; Konieczny, W.; Sabisz, M.; Skladanowski, A.; Wakiec, R.; Augustynowicz-Kopec, E.; Zwolska, Z. Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. Eur. J. Med. Chem.2007, 42, 729-733.3. Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Boorg. Med. Chem. Lett. 2010, 20, 3916-3919.4. Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med.Chem. Lett. 1998, 8, 1051-1056.5. Biradar, J.S.; Sasidhar, B.S.; Parveen, R. Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives. Eur. J. Med. Chem. 2010, 45, 4074-4078.6. Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem.2007, 42, 125-137.7. X.-W. Zhang, D.-H. Zhao, Y.-C. Quan, L.-P. Sun, X.-M. Yin, and L.-P. Guan, “Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives,” Medicinal Chemistry Research, vol. 19, no. 4, pp. 403–412, 2010. 8. A.-M. Katsori andD.Hadjipavlou-Litina, “Chalcones in cancer: understanding their role in terms of QSAR,” Current Medicinal Chemistry, vol. 16, no. 9, pp. 1062–1081, 2009.9. Kien Yung Teo, Wan M. Khairul, Meng Guan Tay, Mee Hing Tiong, Hung Yee Wee, Nornadia Jasin, Zhi-Qiang Liu, Ming Yang Shiu, Jyun Yang Tang, Jenn-Kai Tsai, and Rafizah Rahamathullah, “The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell,” Journal of Molecular Structure, vol. 1143, pp. 42–48, 2017. 10. Huey Chong Kwong, Aijia Sim, C. S. Chidan Kumar, Li Yee Then, Yip-Foo Win, Ching Kheng Quah, S. Naveen, and Ismail Warad, “ Crystal structure and Hirshfeld surface analysis of (2E,2′E )-3,3′-(1,4-phenylene)bis[1-(2,4-difluorophenyl)prop-2-en-1-one],” Acta Crystallographica Section E Crystallographic Communications, vol. 73, no.12, pp.1812–1816, 2017.11. Z. K. Si, Q. Zhang, M. Z. Xue, Q. R. Sheng, and Y. G. Liu, “Novel UV-sensitive bis-chalcone derivatives: synthesis and photocrosslinking properties in solution and solid PMMA film,” Research on Chemical Intermediates, vol. 37, no. 6, pp. 635–646, 2011.12. Y. Wei, G. Qin, W. Wang, W. Bian, S. Shuang, and C. Dong, “Development of fluorescent FeIII sensor based on chalcone,” Journal of Luminescence, vol. 131, no. 8, pp. 1672–1676, 2011.13. T. A. Fayed, “A novel chalcone-analogue as an optical sensor basedonground andexcited states intramolecular charge transfer: a combined experimental and theoretical study,” Chemical Physics, vol. 324, no. 2-3, pp. 631–638, 2006.14. Neslihan Nohut Maşlakçı, Abdullah Biçer, Günseli Turgut Cin, Ayşegül Uygun Öksüz, Electrochromic properties of some bis-chalcone derivatives-based nanofibers, J. Appl. Polym. Scı. 46010, 2018.15. Sogol Motallebi Tala-Tapeh, Nosratollah Mahmoodi, Ali Vaziri, Synthesis of bis-chalcones based on 5,5΄-methylenebis(2-hydroxybenzaldehyde) and screening their antibacterial activity, Journal of Applied Chemistry Vol. 9, No. 32, 2015.16. M. Ritter, R. M. Martins, D. Dias and C. M. P. Pereira, Lett. Org. Chem., 2014, 11, 498–508. 17. S. N. A. Bukhari, M. Jasamai, I. Jantan and W. Ahmad, Mini-Rev. Org. Chem., 2013, 10, 73–8318. J. Xu, C. Wang and Q. Zhang, Heteroat. Chem., 2001, 6, 557–55919. H. M. T. Albuquerque, C. M. M. Santos, J. A. S. Cavaleiro and A. M. S. Silva, Curr.Org. Chem., 2014, 18, 2750–2775.20. Wender A. Silva, Carlos Kleber Z. Andrade, Hamilton B. Napolitano, Ivo Vencato, Carlito Lariucci, Miriam. R. C. de Castro and Ademir J. Camargo, Biological and Structure-Activity Evaluation of Chalcone Derivatives against Bacteria and Fungi, J. Braz. Chem. Soc., Vol. 24, No. 1, 133-144, 201321. Ricardo Baggio, Francisco Brovelli, Yanko Moreno , Marcela Pinto, Jorge Soto-Delgado, Structural, electrochemical and theoretical study of a new chalcone derivative containing 3-thiophene rings, Journal of Molecular Structure, 1123 (2016) 1-722.W. Dong, M. Yan, Z. Liu, G. Wu and Y. Li, Sep. Purif. Technol., 2007, 53, 183–188.23. C. Isarankura-Na-Ayudhya, C. Nantasenamat, P. Buraparuangsang, T. Piacham, L. Ye, L. Bulow and ¨ V. Prachayasittikul, Molecules, 2008, 13, 3077–309124. W. L. Jorgensen, Science, 2004, 303, 1813–1818. 25. J. T. Kim, A. D. Hamilton, C. M. Bailey, R. A. Domoal, L. Wang, K. S. Anderson and W. L. Jorgensen, J. Am. Chem. Soc., 2006, 128, 15372–15373.26. A. F. M. Motiur Rahman, Byeong-Seon Jeong, Dong Hyeon Kim, Jung Ki Park, Eung Seok Lee and Yurngdong Jahng, A facile synthesis of α,α’-bis(substituted-benzylidene) cycloalkanones and substituted-benzylidene heteroaromatics: utility of NaOAc as a catalyst for aldol-type reaction Tetrahedron 63 (2007) 2426–243127. Gholam Hossein Mahdavinia and Maryam Mirzazadeh, Fast, Facile and Convenient Synthesis of α, α-Bis(substituted-arylidene)Cycloalkanones: An improved Protocol, E-Journal of Chemistry 2012, 9(1), 49-5428 .Agilent Technologies, CrysAlis PRO and CrysAlis RED, Yarnton, Oxfordshire England, 2002.29. G.M. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A 71 (2015) 3–8. 30. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J Appl. Cryst. 42 (2009) 339–341.31. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C 71 (2015) 3–8. 32. A. Frisch, R.D. Dennington, T.A. Keith, J. Milliam, A.B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Reference, Version 4.0., Gaussian Inc., Pittsburgh, 2007.33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W.Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E. 01, Gaussian, Inc., Pittsburgh, PA, 2003.34. A. Frisch, R.D. Dennington, T.A. Keith, J. Milliam, A.B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Reference, Version 4.0., Gaussian Inc., Pittsburgh, 2007.35. J. Bernstein, R.E Davis, L. Shimoni, N.L. Chang, Patterns in hydrogen bonding: Functionality and graph set analysis in crystals, Angew. Chem. Int. Ed. Engl. 34 (1995) 1555–1573.36. S. Thabti , A. Djedouani, S. Rahmouni, R. Touzani, A. Bendaas, H. Mousser, A. Mousser, Journal of Molecular Structure 1102 (2015) 295-301.37. A. Ghouili, M. Dusek, V. Petricek, T. B. Ayed , R. B. Hassen, Journal of Physics and Chemistry of Solids, 75, (2014), 188–19338. K. Zutin, V.M. Nogueira , A.E. Mauro , P. Melnikov , A. Iluykhin, Polyhedron, 20, (2001), 1011–101639. S.Seshadri, Rasheed .M.P & R.Sangeetha, Journal of Applied Chemistry,8, (2015), 87-100. 40. A. Abbas, H. Gökçe , Semiha Bahçeli , Michael Bolte, M. M. Naseer, Journal of Molecular Structure ,1112, (2016) 124-135

Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives

Year 2019, Volume: 3 Issue: 1, 5 - 16, 15.06.2019
https://doi.org/10.33435/tcandtc.457472

Abstract

The three  bis-chalcone compounds, (2E,6E)-2,6-bis(3-chlorobenzylidene)cyclohexanone (1), (2E,6E)-2,6-bis(2,3-dichlorobenzylidene)cyclohexanone (2) and (2E,5E)-2,5-bis(2,6-dichloro benzylidene) cyclopentanone (3), were studied with theoretical and single-crystal X-ray diffraction (XRD) methods. The molecular geometric parameters, frontier molecular orbitals, MEP, normal mode frequencies and the corresponding vibrational assignments, gauge-including atomic orbital (GIAO) 1H-NMR, 13C-NMR chemical shift values of the bis-chalcone compounds in the ground state have been calculated using the density functional  (B3LYP) methods with 6-311G (d,p) basis set. These molecules demonstrate apparently a long and flat shape. Each molecule adopt an (E) configuration about the central olefinic bonds. The most important feature is stacking mode in the molecules. The calculated results reveal that the optimized geometries can well reproduce the crystal structure. The theoretical vibrational frequencies and 1H-NMR and 13C-NMR chemical shift values show good agreement with the experimental data.

References

  • . Rane, R.A.; Telekar, V.N. Synthesis and evaluation of novel chloropyrrole molecules designed by molecular hybridization of common pharmacophores as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2010, 20, 5681-5685.2. Konieczny, M.T.; Konieczny, W.; Sabisz, M.; Skladanowski, A.; Wakiec, R.; Augustynowicz-Kopec, E.; Zwolska, Z. Acid-catalyzed synthesis of oxathiolone fused chalcones. Comparison of their activity toward various microorganisms and human cancer cells line. Eur. J. Med. Chem.2007, 42, 729-733.3. Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Boorg. Med. Chem. Lett. 2010, 20, 3916-3919.4. Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med.Chem. Lett. 1998, 8, 1051-1056.5. Biradar, J.S.; Sasidhar, B.S.; Parveen, R. Synthesis, antioxidant and DNA cleavage activities of novel indole derivatives. Eur. J. Med. Chem. 2010, 45, 4074-4078.6. Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem.2007, 42, 125-137.7. X.-W. Zhang, D.-H. Zhao, Y.-C. Quan, L.-P. Sun, X.-M. Yin, and L.-P. Guan, “Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives,” Medicinal Chemistry Research, vol. 19, no. 4, pp. 403–412, 2010. 8. A.-M. Katsori andD.Hadjipavlou-Litina, “Chalcones in cancer: understanding their role in terms of QSAR,” Current Medicinal Chemistry, vol. 16, no. 9, pp. 1062–1081, 2009.9. Kien Yung Teo, Wan M. Khairul, Meng Guan Tay, Mee Hing Tiong, Hung Yee Wee, Nornadia Jasin, Zhi-Qiang Liu, Ming Yang Shiu, Jyun Yang Tang, Jenn-Kai Tsai, and Rafizah Rahamathullah, “The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell,” Journal of Molecular Structure, vol. 1143, pp. 42–48, 2017. 10. Huey Chong Kwong, Aijia Sim, C. S. Chidan Kumar, Li Yee Then, Yip-Foo Win, Ching Kheng Quah, S. Naveen, and Ismail Warad, “ Crystal structure and Hirshfeld surface analysis of (2E,2′E )-3,3′-(1,4-phenylene)bis[1-(2,4-difluorophenyl)prop-2-en-1-one],” Acta Crystallographica Section E Crystallographic Communications, vol. 73, no.12, pp.1812–1816, 2017.11. Z. K. Si, Q. Zhang, M. Z. Xue, Q. R. Sheng, and Y. G. Liu, “Novel UV-sensitive bis-chalcone derivatives: synthesis and photocrosslinking properties in solution and solid PMMA film,” Research on Chemical Intermediates, vol. 37, no. 6, pp. 635–646, 2011.12. Y. Wei, G. Qin, W. Wang, W. Bian, S. Shuang, and C. Dong, “Development of fluorescent FeIII sensor based on chalcone,” Journal of Luminescence, vol. 131, no. 8, pp. 1672–1676, 2011.13. T. A. Fayed, “A novel chalcone-analogue as an optical sensor basedonground andexcited states intramolecular charge transfer: a combined experimental and theoretical study,” Chemical Physics, vol. 324, no. 2-3, pp. 631–638, 2006.14. Neslihan Nohut Maşlakçı, Abdullah Biçer, Günseli Turgut Cin, Ayşegül Uygun Öksüz, Electrochromic properties of some bis-chalcone derivatives-based nanofibers, J. Appl. Polym. Scı. 46010, 2018.15. Sogol Motallebi Tala-Tapeh, Nosratollah Mahmoodi, Ali Vaziri, Synthesis of bis-chalcones based on 5,5΄-methylenebis(2-hydroxybenzaldehyde) and screening their antibacterial activity, Journal of Applied Chemistry Vol. 9, No. 32, 2015.16. M. Ritter, R. M. Martins, D. Dias and C. M. P. Pereira, Lett. Org. Chem., 2014, 11, 498–508. 17. S. N. A. Bukhari, M. Jasamai, I. Jantan and W. Ahmad, Mini-Rev. Org. Chem., 2013, 10, 73–8318. J. Xu, C. Wang and Q. Zhang, Heteroat. Chem., 2001, 6, 557–55919. H. M. T. Albuquerque, C. M. M. Santos, J. A. S. Cavaleiro and A. M. S. Silva, Curr.Org. Chem., 2014, 18, 2750–2775.20. Wender A. Silva, Carlos Kleber Z. Andrade, Hamilton B. Napolitano, Ivo Vencato, Carlito Lariucci, Miriam. R. C. de Castro and Ademir J. Camargo, Biological and Structure-Activity Evaluation of Chalcone Derivatives against Bacteria and Fungi, J. Braz. Chem. Soc., Vol. 24, No. 1, 133-144, 201321. Ricardo Baggio, Francisco Brovelli, Yanko Moreno , Marcela Pinto, Jorge Soto-Delgado, Structural, electrochemical and theoretical study of a new chalcone derivative containing 3-thiophene rings, Journal of Molecular Structure, 1123 (2016) 1-722.W. Dong, M. Yan, Z. Liu, G. Wu and Y. Li, Sep. Purif. Technol., 2007, 53, 183–188.23. C. Isarankura-Na-Ayudhya, C. Nantasenamat, P. Buraparuangsang, T. Piacham, L. Ye, L. Bulow and ¨ V. Prachayasittikul, Molecules, 2008, 13, 3077–309124. W. L. Jorgensen, Science, 2004, 303, 1813–1818. 25. J. T. Kim, A. D. Hamilton, C. M. Bailey, R. A. Domoal, L. Wang, K. S. Anderson and W. L. Jorgensen, J. Am. Chem. Soc., 2006, 128, 15372–15373.26. A. F. M. Motiur Rahman, Byeong-Seon Jeong, Dong Hyeon Kim, Jung Ki Park, Eung Seok Lee and Yurngdong Jahng, A facile synthesis of α,α’-bis(substituted-benzylidene) cycloalkanones and substituted-benzylidene heteroaromatics: utility of NaOAc as a catalyst for aldol-type reaction Tetrahedron 63 (2007) 2426–243127. Gholam Hossein Mahdavinia and Maryam Mirzazadeh, Fast, Facile and Convenient Synthesis of α, α-Bis(substituted-arylidene)Cycloalkanones: An improved Protocol, E-Journal of Chemistry 2012, 9(1), 49-5428 .Agilent Technologies, CrysAlis PRO and CrysAlis RED, Yarnton, Oxfordshire England, 2002.29. G.M. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A 71 (2015) 3–8. 30. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J Appl. Cryst. 42 (2009) 339–341.31. G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C 71 (2015) 3–8. 32. A. Frisch, R.D. Dennington, T.A. Keith, J. Milliam, A.B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Reference, Version 4.0., Gaussian Inc., Pittsburgh, 2007.33. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al- Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W.Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E. 01, Gaussian, Inc., Pittsburgh, PA, 2003.34. A. Frisch, R.D. Dennington, T.A. Keith, J. Milliam, A.B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Reference, Version 4.0., Gaussian Inc., Pittsburgh, 2007.35. J. Bernstein, R.E Davis, L. Shimoni, N.L. Chang, Patterns in hydrogen bonding: Functionality and graph set analysis in crystals, Angew. Chem. Int. Ed. Engl. 34 (1995) 1555–1573.36. S. Thabti , A. Djedouani, S. Rahmouni, R. Touzani, A. Bendaas, H. Mousser, A. Mousser, Journal of Molecular Structure 1102 (2015) 295-301.37. A. Ghouili, M. Dusek, V. Petricek, T. B. Ayed , R. B. Hassen, Journal of Physics and Chemistry of Solids, 75, (2014), 188–19338. K. Zutin, V.M. Nogueira , A.E. Mauro , P. Melnikov , A. Iluykhin, Polyhedron, 20, (2001), 1011–101639. S.Seshadri, Rasheed .M.P & R.Sangeetha, Journal of Applied Chemistry,8, (2015), 87-100. 40. A. Abbas, H. Gökçe , Semiha Bahçeli , Michael Bolte, M. M. Naseer, Journal of Molecular Structure ,1112, (2016) 124-135
There are 1 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Gül Yakalı

Abdullah Biçer

Duygu Barut This is me

Günseli Turgut Cin

Publication Date June 15, 2019
Submission Date September 5, 2018
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Yakalı, G., Biçer, A., Barut, D., Cin, G. T. (2019). Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives. Turkish Computational and Theoretical Chemistry, 3(1), 5-16. https://doi.org/10.33435/tcandtc.457472
AMA Yakalı G, Biçer A, Barut D, Cin GT. Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives. Turkish Comp Theo Chem (TC&TC). June 2019;3(1):5-16. doi:10.33435/tcandtc.457472
Chicago Yakalı, Gül, Abdullah Biçer, Duygu Barut, and Günseli Turgut Cin. “Density Functional Theory and Single Crystal X-Ray Studies on Some Bis-Chalcone Derivatives”. Turkish Computational and Theoretical Chemistry 3, no. 1 (June 2019): 5-16. https://doi.org/10.33435/tcandtc.457472.
EndNote Yakalı G, Biçer A, Barut D, Cin GT (June 1, 2019) Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives. Turkish Computational and Theoretical Chemistry 3 1 5–16.
IEEE G. Yakalı, A. Biçer, D. Barut, and G. T. Cin, “Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives”, Turkish Comp Theo Chem (TC&TC), vol. 3, no. 1, pp. 5–16, 2019, doi: 10.33435/tcandtc.457472.
ISNAD Yakalı, Gül et al. “Density Functional Theory and Single Crystal X-Ray Studies on Some Bis-Chalcone Derivatives”. Turkish Computational and Theoretical Chemistry 3/1 (June 2019), 5-16. https://doi.org/10.33435/tcandtc.457472.
JAMA Yakalı G, Biçer A, Barut D, Cin GT. Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives. Turkish Comp Theo Chem (TC&TC). 2019;3:5–16.
MLA Yakalı, Gül et al. “Density Functional Theory and Single Crystal X-Ray Studies on Some Bis-Chalcone Derivatives”. Turkish Computational and Theoretical Chemistry, vol. 3, no. 1, 2019, pp. 5-16, doi:10.33435/tcandtc.457472.
Vancouver Yakalı G, Biçer A, Barut D, Cin GT. Density Functional Theory and Single Crystal X-ray Studies on Some Bis-Chalcone Derivatives. Turkish Comp Theo Chem (TC&TC). 2019;3(1):5-16.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)