[1] C. Hulme, M.-P. Cherrier, Novel applications of ethyl glyoxalate with the Ugi MCR, Tetrahedron letters 40(29) (1999) 5295-5299.
[2] Y.S. Mary, C.Y. Panicker, V.N. Kavitha, H.S. Yathirajan, M.S. Siddegowda, S. Cruz, Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO–LUMO analysis and molecular docking study of Opipramol, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 547-559.
[3] G. Keşan, Ö. Bağlayan, C. Parlak, Ö. Alver, M. Şenyel, FT-IR and Raman spectroscopic and quantum chemical investigations of some metal halide complexes of 1-phenylpiperazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 88 (2012) 144-155.
[4] N. Prabavathi, N. Senthil Nayaki, V. Krishnakumar, Spectroscopic investigation (FT-IR, FT-Raman, NMR and UV-Vis), conformational stability, NBO and thermodynamic analysis of 1-(2-methoxyphenyl) piperazine and 1-(2-chlorophenyl) piperazine by DFT approach, Pharm Anal Acta 6(391) (2015) 2.
[5] G. Dikmen, 1-(4-chlorophenyl) piperazine: FT-IR, Raman, NMR and theoretical studies, Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering 20(2) (2019)
[6] R. Martin, G.R. Martin, Investigations into migraine pathogenesis: time course for effects of m-CPP, BW723C86 or glyceryl trinitrate on appearance of Fos-like immunoreactivity in rat trigeminal nucleus caudalis (TNC), Cephalalgia 21(1) (2001) 46-52.
[7] A. Hayashi, M. Suzuki, M. Sasamata, K. Miyata, K.Hayashi, Agonist diversity in 5-HT 2C receptor-mediated weight control in rats, Psychopharmacology 178(2-3) (2005) 241-249.
[9] M.A. Bhat, S.H. Lone, R.J. Butcher, S.K. Srivastava, Theoretical and experimental investigations into structural, electronic, molecular and biological properties of 4-(3-chlorophenyl)-1-(3-chloropropyl) piperazin-1-ium chloride, Journal of Molecular Structure 1168 (2018) 242-249.
[10] C.N. Kavitha, J.P. Jasinski, M. Kaur, H.S. Yathirajan, R.J. Butcher, Synthesis, Crystal Structures and DFT Molecular Orbital Surface Calculations of Two New Salts of a Piperazine Derivative, Journal of Chemical Crystallography 44(10) (2014) 534-541.
[11] R. man STANASZEK, Z. U. B. A. Dariusz, 1-(3-chlorophenyl) piperazine (mCPP)–a new designer drug that is still a legal substance, Problems of Forensic Sciences (2006) 220-228.
[12] H. Inoue, Y.T. Iwata, T. Kanamori, H. Miyaguchi, K. Tsujikawa, K. Kuwayama, T. Kishi, Analysis of benzylpiperazine-like compounds, Japanese Journal of Science and Technology for identification 9(2) (2004) 165-184.
[13] Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, Jr. R.A. DiStasio, Spartan’08, Wavefunction, Inc. Irvine, CA, Phys. Chem. Chem. Phys 8 (2006) 3172-3191.
[14] Ö. Dereli, Molecular structure and spectral (FT-IR, Raman) investigations of 3-aminocoumarin, Optics and Spectroscopy 120(5) (2016) 690-700.
[15] M.J.E.A. Frisch, G.W. Trucks, G. H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, H. Nakatsuji, Gaussian 09, Revision D. 01, Gaussian, Wallingford CT 201 (2009).
[16] P. Hohenberg, W.J.P.R. Kohn, Density functional theory (DFT), Physical review 136 (1964) B864.
[17] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review 37(2) (1988) 37(2) 785.
[18] M.P. Andersson, P. Uvdal, New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+ G (d, p). he Journal of Physical Chemistry A 109(12) (2005) 2937-2941.
[19] N. Prabavathi, A. Nilufer, V. Krishnakumar, FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl) phenyl) piperazine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121 (2014) 483-493.
[20] P.S. Liyanage, R.M. de Silva, K.N. de Silva, Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations, Journal of Molecular Structure 639(1-3) (2003) 195-201.
[21] P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers, Wiley New York 1 1991
[22] I.C. de Silva, R.M. de Silva, K.N. De Silva, Investigations of nonlinear optical (NLO) properties of Fe, Ru and Os organometallic complexes using high accuracy density functional theory (DFT) calculations, Journal of Molecular Structure: THEOCHEM 728(1-3) (2005) 141-145.
[23] R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences 83(22) (1986) 8440-8441.
[24] L. Pauling, the Nature of the Chemical Bond. Vol. 260 Cornell University press Ithaca, Newyork, 1960.
[25] F. Weinhold, C.R. Landis, E.D. Glendening, What is NBO analysis and how is it useful?, International Reviews in Physical Chemistry 35(3) (2016) 399-440.
[26] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, Journal of the American Chemical Society 105(24) (1983) 7037-
7047.
[27] C. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar, I.H. Joe, Structural conformation and vibrational spectroscopic studies of 2, 6-bis (p-N, N-dimethyl benzylidene) cyclohexanone using density functional theory, An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 37(12) (2006) 1381-1392.
[28] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature materials 10(8) (2011) 569-581.
[29] P. Kolandaivel, V. Nirmala, Study of proper and improper hydrogen bonding using Bader's atoms in molecules (AIM) theory and NBO analysis, Journal of molecular structure 694(1-3) (2004) 33-38.
[30] J. Chocholoušová, V. Špirko, P. Hobza, First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯ O and improper blue-shifted C–H⋯ O hydrogen bonds, Physical Chemistry Chemical Physics 6(1) (2004) 37-41.
[32] E.K. Sarıkaya, S. Bahçeli, D. Varkal, Ö. Derli, FT-IR, micro-Raman and UV–vis spectroscopic and quantum chemical calculation studies on the 6-chloro-4-hydroxy-3-phenyl pyridazine compound, Journal of Molecular Structure 1141 (2017) 44-52.
[33] D. Sajan, Y. Erdogdu, R. Reshmy, Ö. Dereli, K.K. Thomas, I.H. Joe, DFT-based molecular modeling, NBO analysis and vibrational spectroscopic study of 3-(bromoacetyl) coumarin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 82(1) (2011) 118-125.
[34] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier (2012).
[35] S. Bharanidharan, H. Saleem, S. Subashchandrabose, M. Suresh, N. Ramesh Babu, FT-IR, FT-Raman and UV-Visible spectral analysis on (E)-N′-(thiophen-2-ylmethylene) nicotinohydrazide, Archives in Chemical Research 1(2) (2017).
Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule
Year 2020,
Volume: 4 Issue: 2, 88 - 97, 15.12.2020
In this study, the experimentally obtained IR spectrum of the meta-Chlorophenylpiperazine (C10H13ClN2) molecule, which is used in the testing phase of antimigren drugs in the literature, was obtained theoretically and the structural properties obtained for ortho and para derivatives of the title molecule were compared. moreover, the optimized molecular structure, conformational analysis, Nonlinear optics properties, HOMO-LUMO and Chemical reactivity descriptors that is the ionization potential, The electron affinity the chemical hardness, softness and the electronegativtiy, Molecular electrostatic potential, Natural Bonding Orbital and Raman spectrum were calculated using density functional theory method with B3LYP functional with 6-311++G (d, p) basis set in ground state. The results introduce that molecular modelling are valuable for obtainment insight into molecular structure and electronic properties of the mCPP molecule
[1] C. Hulme, M.-P. Cherrier, Novel applications of ethyl glyoxalate with the Ugi MCR, Tetrahedron letters 40(29) (1999) 5295-5299.
[2] Y.S. Mary, C.Y. Panicker, V.N. Kavitha, H.S. Yathirajan, M.S. Siddegowda, S. Cruz, Spectroscopic investigation (FT-IR, FT-Raman and SERS), vibrational assignments, HOMO–LUMO analysis and molecular docking study of Opipramol, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 547-559.
[3] G. Keşan, Ö. Bağlayan, C. Parlak, Ö. Alver, M. Şenyel, FT-IR and Raman spectroscopic and quantum chemical investigations of some metal halide complexes of 1-phenylpiperazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 88 (2012) 144-155.
[4] N. Prabavathi, N. Senthil Nayaki, V. Krishnakumar, Spectroscopic investigation (FT-IR, FT-Raman, NMR and UV-Vis), conformational stability, NBO and thermodynamic analysis of 1-(2-methoxyphenyl) piperazine and 1-(2-chlorophenyl) piperazine by DFT approach, Pharm Anal Acta 6(391) (2015) 2.
[5] G. Dikmen, 1-(4-chlorophenyl) piperazine: FT-IR, Raman, NMR and theoretical studies, Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering 20(2) (2019)
[6] R. Martin, G.R. Martin, Investigations into migraine pathogenesis: time course for effects of m-CPP, BW723C86 or glyceryl trinitrate on appearance of Fos-like immunoreactivity in rat trigeminal nucleus caudalis (TNC), Cephalalgia 21(1) (2001) 46-52.
[7] A. Hayashi, M. Suzuki, M. Sasamata, K. Miyata, K.Hayashi, Agonist diversity in 5-HT 2C receptor-mediated weight control in rats, Psychopharmacology 178(2-3) (2005) 241-249.
[9] M.A. Bhat, S.H. Lone, R.J. Butcher, S.K. Srivastava, Theoretical and experimental investigations into structural, electronic, molecular and biological properties of 4-(3-chlorophenyl)-1-(3-chloropropyl) piperazin-1-ium chloride, Journal of Molecular Structure 1168 (2018) 242-249.
[10] C.N. Kavitha, J.P. Jasinski, M. Kaur, H.S. Yathirajan, R.J. Butcher, Synthesis, Crystal Structures and DFT Molecular Orbital Surface Calculations of Two New Salts of a Piperazine Derivative, Journal of Chemical Crystallography 44(10) (2014) 534-541.
[11] R. man STANASZEK, Z. U. B. A. Dariusz, 1-(3-chlorophenyl) piperazine (mCPP)–a new designer drug that is still a legal substance, Problems of Forensic Sciences (2006) 220-228.
[12] H. Inoue, Y.T. Iwata, T. Kanamori, H. Miyaguchi, K. Tsujikawa, K. Kuwayama, T. Kishi, Analysis of benzylpiperazine-like compounds, Japanese Journal of Science and Technology for identification 9(2) (2004) 165-184.
[13] Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, Jr. R.A. DiStasio, Spartan’08, Wavefunction, Inc. Irvine, CA, Phys. Chem. Chem. Phys 8 (2006) 3172-3191.
[14] Ö. Dereli, Molecular structure and spectral (FT-IR, Raman) investigations of 3-aminocoumarin, Optics and Spectroscopy 120(5) (2016) 690-700.
[15] M.J.E.A. Frisch, G.W. Trucks, G. H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, H. Nakatsuji, Gaussian 09, Revision D. 01, Gaussian, Wallingford CT 201 (2009).
[16] P. Hohenberg, W.J.P.R. Kohn, Density functional theory (DFT), Physical review 136 (1964) B864.
[17] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review 37(2) (1988) 37(2) 785.
[18] M.P. Andersson, P. Uvdal, New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+ G (d, p). he Journal of Physical Chemistry A 109(12) (2005) 2937-2941.
[19] N. Prabavathi, A. Nilufer, V. Krishnakumar, FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl) phenyl) piperazine, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121 (2014) 483-493.
[20] P.S. Liyanage, R.M. de Silva, K.N. de Silva, Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations, Journal of Molecular Structure 639(1-3) (2003) 195-201.
[21] P.N. Prasad, D.J. Williams, Introduction to nonlinear optical effects in molecules and polymers, Wiley New York 1 1991
[22] I.C. de Silva, R.M. de Silva, K.N. De Silva, Investigations of nonlinear optical (NLO) properties of Fe, Ru and Os organometallic complexes using high accuracy density functional theory (DFT) calculations, Journal of Molecular Structure: THEOCHEM 728(1-3) (2005) 141-145.
[23] R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory, Proceedings of the National Academy of Sciences 83(22) (1986) 8440-8441.
[24] L. Pauling, the Nature of the Chemical Bond. Vol. 260 Cornell University press Ithaca, Newyork, 1960.
[25] F. Weinhold, C.R. Landis, E.D. Glendening, What is NBO analysis and how is it useful?, International Reviews in Physical Chemistry 35(3) (2016) 399-440.
[26] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, Journal of the American Chemical Society 105(24) (1983) 7037-
7047.
[27] C. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar, I.H. Joe, Structural conformation and vibrational spectroscopic studies of 2, 6-bis (p-N, N-dimethyl benzylidene) cyclohexanone using density functional theory, An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 37(12) (2006) 1381-1392.
[28] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature materials 10(8) (2011) 569-581.
[29] P. Kolandaivel, V. Nirmala, Study of proper and improper hydrogen bonding using Bader's atoms in molecules (AIM) theory and NBO analysis, Journal of molecular structure 694(1-3) (2004) 33-38.
[30] J. Chocholoušová, V. Špirko, P. Hobza, First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯ O and improper blue-shifted C–H⋯ O hydrogen bonds, Physical Chemistry Chemical Physics 6(1) (2004) 37-41.
[32] E.K. Sarıkaya, S. Bahçeli, D. Varkal, Ö. Derli, FT-IR, micro-Raman and UV–vis spectroscopic and quantum chemical calculation studies on the 6-chloro-4-hydroxy-3-phenyl pyridazine compound, Journal of Molecular Structure 1141 (2017) 44-52.
[33] D. Sajan, Y. Erdogdu, R. Reshmy, Ö. Dereli, K.K. Thomas, I.H. Joe, DFT-based molecular modeling, NBO analysis and vibrational spectroscopic study of 3-(bromoacetyl) coumarin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 82(1) (2011) 118-125.
[34] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier (2012).
[35] S. Bharanidharan, H. Saleem, S. Subashchandrabose, M. Suresh, N. Ramesh Babu, FT-IR, FT-Raman and UV-Visible spectral analysis on (E)-N′-(thiophen-2-ylmethylene) nicotinohydrazide, Archives in Chemical Research 1(2) (2017).
Ekincioğlu, Y., Kılıç, H. Ş., & Dereli, Ö. (2020). Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule. Turkish Computational and Theoretical Chemistry, 4(2), 88-97. https://doi.org/10.33435/tcandtc.811494
AMA
Ekincioğlu Y, Kılıç HŞ, Dereli Ö. Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule. Turkish Comp Theo Chem (TC&TC). December 2020;4(2):88-97. doi:10.33435/tcandtc.811494
Chicago
Ekincioğlu, Yavuz, Hamdi Şükür Kılıç, and Ömer Dereli. “Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule”. Turkish Computational and Theoretical Chemistry 4, no. 2 (December 2020): 88-97. https://doi.org/10.33435/tcandtc.811494.
EndNote
Ekincioğlu Y, Kılıç HŞ, Dereli Ö (December 1, 2020) Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule. Turkish Computational and Theoretical Chemistry 4 2 88–97.
IEEE
Y. Ekincioğlu, H. Ş. Kılıç, and Ö. Dereli, “Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule”, Turkish Comp Theo Chem (TC&TC), vol. 4, no. 2, pp. 88–97, 2020, doi: 10.33435/tcandtc.811494.
ISNAD
Ekincioğlu, Yavuz et al. “Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule”. Turkish Computational and Theoretical Chemistry 4/2 (December 2020), 88-97. https://doi.org/10.33435/tcandtc.811494.
JAMA
Ekincioğlu Y, Kılıç HŞ, Dereli Ö. Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule. Turkish Comp Theo Chem (TC&TC). 2020;4:88–97.
MLA
Ekincioğlu, Yavuz et al. “Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule”. Turkish Computational and Theoretical Chemistry, vol. 4, no. 2, 2020, pp. 88-97, doi:10.33435/tcandtc.811494.
Vancouver
Ekincioğlu Y, Kılıç HŞ, Dereli Ö. Structural Parameters, Electronic, Spectroscopic and Nonlinear Optical Theoretical Research of 1-(m-Chlorophenyl)piperazine (mCPP) Molecule. Turkish Comp Theo Chem (TC&TC). 2020;4(2):88-97.