Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yıl 2021, Cilt 5, Sayı 1, 39 - 50, 15.06.2021
https://doi.org/10.33435/tcandtc.914768

Öz

Kaynakça

  • R. Hevey, Strategies for the development of glycomimetic drug candidates. Pharmaceuticals 12(2) (2019) 55. https://doi.org/10.3390/ph12020055
  • H.M. Ei-Laithy, O. Shoukry, L.G.Mahran, Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. European Journal of Pharmaceutics and Biopharmaceutics 77 (2011) 43-55. https://doi.org/10.1016/j.ejpb.2010.10.011
  • D.D. Dhavale, M.M. Matin, Selective sulfonylation of 4-C-hyroxymethyl--L-threo-pento-1,4-furanose: Synthesis of bicyclic diazasugars. Tetrahedron 60(19) (2004) 4275-4281. https://doi.org/10.1016/j.tet.2004.03.034
  • D.D. Dhavale, M.M. Matin, T. Sharma, S.G. Sabharwal, Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido[1,2-a]pyrimidine and octahydro-imidazo[1,2-a]pyridine bicyclic diazasugars. Bioorganic & Medicinal Chemistry 12 (2004) 4039-4044. https://doi.org/10.1016/j.bmc.2004.05.030
  • A.M. Gumel, M.S.M. Annuar, T. Heidelberg, Y. Chisti, Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry 46 (2011) 2079-90. https://doi.org/10.1016/j.procbio.2011.07.021
  • M.M. Matin, P. Chakraborty, M.S. Alam, M.M. Islam, U. Hanee, Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydrate Research 496 (2020) 108130. https://doi.org/10.1016/j.carres.2020.108130
  • Y.L. Teng, S.G. Stewart, Y.W. Hai, X. Li, M.G. Banwell, P. Lan, Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles. Critical Reviews in Food Science and Nutrition 2020. https://doi.org/10.1080/10408398.2020.1798346
  • M.M. Matin, S.C. Bhattacharjee, P. Chakraborty, M.S. Alam, Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydrate Research 485 (2019) 107812. https://doi.org/10.1016/j.carres.2019.107812
  • M.M. Matin, M.M.H. Bhuiyan, A.K.M.S. Azad, M.H.O. Rashid, Synthesis of 6-O-stearoyl-1,2-O-isopropylidene-α-D-gluco-furanose derivatives for antimicrobial evaluation. Journal of Physical Science 26(1) (2015) 1-12.
  • D.R. Perinelli, S. Lucarini, L. Fagioli, R. Campana, D. Vllasaliu, A. Duranti, L. Casettari, Lactose oleate as new biocompatible surfactant for pharmaceutical applications. European Journal of Pharmaceutics and Biopharmaceutics 124 (2018) 55-62. https://doi.org/10.1016/j.ejpb.2017.12.008
  • A.V. Demchenko, Stereoselective chemical 1,2-cis O-glycosylation: From ‘Sugar Ray’ to modern techniques of the 21st century. Synlett (2003) 1225-1240. https://doi.org/10.1055/s-2003-40349
  • D. Crich, Chemistry of glycosyl triflates:Synthesis of β-mannopyranosides. Journal of Carbohydrate Chemistry 21 (2002) 663-686. https://doi.org/10.1081/CAR-120016486
  • M.M. Matin, M.M.H. Bhuiyan, E. Kabir, A.F.M. Sanaullah, M.A. Rahman, M.E. Hossain, M. Uzzaman, Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. Journal of Molecular Structure 1195 (2019) 189-197. https://doi.org/10.1016/j.molstruc.2019.05.102
  • B. Ren, L. Zhang, M. Zhang, Progress on selective acylation of carbohydrate hydroxyl groups. Asian Journal Organic Chemistry 8 (2019) 1813-1823. https://doi.org/10.1002/ajoc.201900400
  • M.M. Matin, T. Sharma, S.G. Sabharwal, D.D. Dhavale, Synthesis and evaluation of glycosidase inhibitory activity of 5-hydroxy substituted isofagomine analogues. Organic & Biomolecular Chemistry 3 (2005) 1702-1707. https://doi.org/10.1039/b418283a
  • M.M. Matin, P. Chakraborty, Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. Journal of Applied Science & Process Engineering 7(2) (2020) 572-586. https://doi.org/10.33736/jaspe.2603.2020
  • A.R. Buzatu, A.E. Frissen, L.A.M. van den Broek, A. Todea, M. Motoc, C.G. Boeriu, Chemoenzymatic synthesis of new aromatic esters of mono- and oligosaccharides. Processes 8 (2020) 1638. https://doi.org/10.3390/pr8121638
  • M.M. Matin, M.S. Hasan, M. Uzzaman, M.M.H. Bhuiyan, S.M. Kibria, M.E. Hossain, M.H.O. Roshid, Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. Journal of Molecular Structure 1222 (2020) 128821. https://doi.org/10.1016/j.molstruc.2020.128821
  • A. Richel, P. Laurent, B. Wathelet, J.–P. Wathelet, M. Paquot, Microwave-assisted conversion of carbohydrates. State of the art and outlook. Comptes Rendus Chimie 14 (2011) 224-234. https://doi.org/10.1016/j.crci.2010.04.004
  • S.R. Kim, Y.C. Kim, Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. Phytochemistry 54 2000, 503-509. https://doi.org/10.1016/s0031-9422(00)00110-2
  • X.Z. Dong, C.L. Huang, B.Y. Yu, Y. Hu, L.H. Mu, P. Liu, Effect of Tenuifoliside A isolated from Polygala tenuifolia on the ERK and PI3K pathways in C6 glioma cells. Phytomedicine 21 (2014) 1178-1188. https://doi.org/10.1016/j.phymed.2014.04.022
  • Y. Tian, W. Liu, Y. Lu, Y. Wang, X. Chen, S. Bai, Y. Zhao, T. He, F. Lao, Y. Shang, Y. Guo, G. She, Naturally occurring cinnamic acid sugar ester derivatives. Molecules 21 (2016) 1402. https://doi.org/10.3390/molecules21101402
  • M. Mihoub, A. Pichette, B. Sylla, C. Gauthier, J. Legault, Bidesmosidic betulin saponin bearing L-rhamnopyranoside moieties induces apoptosis and inhibition of lung cancer cells growth in vitro and in vivo. PLoS ONE 13(3) (2018) 0193386. https://doi.org/10.1371/journal.pone.0193386
  • A.K.M.S. Kabir, M.M. Matin, A. Hossain, M.A. Sattar, Synthesis and antimicrobial activities of some rhamnopyranoside derivatives. Journal of Bangladesh Chemical Society 16(2) 2003, 85-93.
  • M.M. Matin, M. Ibrahim, Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. Journal of Applied Sciences Research 6(10) (2010) 1527-1532.
  • M.M. Matin, M. Ibrahim, M.S. Rahman, Antimicrobial evaluation of methyl 4-O-acetyl-α-L-rhamnopyranoside derivatives. The Chittagong University Journal of Biological Sciences 3(1&2) (2008) 33-43. http://dx.doi.org/10.3329/cujbs.v3i1.13404
  • M.M. Matin, M.H.O. Roshid, S.C. Bhattacharjee, A.K.M.S. Azad, PASS predication, antiviral, in vitro antimicrobial, and ADMET studies of rhamnopyranoside esters. Medical Research Archives 8(7) (2020) 2165. https://doi.org/10.18103/mra.v8i7.2165
  • J. Qian, D. Hunkler, H. Rimpler, Iridoid-related aglycone and its glycosides from Scrophularia ningpoensis. Phytochemistry 31 (1992) 905-911. https://doi.org/10.1016/0031-9422(92)80037-F
  • J.A. Duck, E.S. Ayensu, 1985, Medical Plants of China. Algonac, MI, p. 599.
  • F.O. Akong, S. Bouquillon, Efficient syntheses of bolaform surfactants from l-rhamnose and/or 3-(4-hydroxyphenyl)propionic acid. Green Chemistry 17 (2015) 3290-3300. https://doi.org/10.1039/C5GC00448A
  • X.–D. Yang, Z.–Y. Li, S.–X. Mei, J.–F. Zhao, H.–B. Zhang, L. Li, Two new phenylpropanoid esters of rhamnose from Lagotis yunnanensis. Journal of Asian Natural Products Research 5(3) (2003) 223-226. https://doi.org/10.1080/1028602031000093366
  • G.M. Lipkind, A.S. Shashkov, O.A. Nechaev, V.I. Torgov, V.N. Shibaev, N.K. Kochetkov, Conformations of branched trisaccharides with vicinal substitution according to the nuclear Overhauser effect and theoretical calculations. III. The spectra of 13C-NMR and trisaccharides conformation with galactose residue in a node branching. Bioorg. Khim. 15 (1989) 1366-1374.
  • G.M. Lipkind, N.E. Nifantev, A.S. Shashkov, N.K. Kochetkov, NMR and conformational study of branched oligosaccharides containing 2,3-disubstituted residues of α-L-rhamnose. Canadian Journal of Chemistry 68 (1990) 1238-1250. https://doi.org/10.1139/v90-192
  • R. Pendrill, L. Eriksson, G. Widmalma, Methyl 4-O-benzyl-α-L-rhamnopyranoside. Acta Crystallographica Section E 70 (2014) o561–o562. https://doi.org/10.1107/S1600536814007922
  • R.A. Mendes, S.K.C. Almeida, I.N. Soares, C.A. Barboza, R.G. Freitas, A. Brown, G.L.C. de Souza, A computational investigation on the antioxidant potential of myricetin 3,4-di-O-α-L-rhamnopyranoside. Journal of Molecular Modeling 24 (2018) 133. https://doi.org/10.1007/s00894-018-3663-2
  • M.M. Matin, M.M.H. Bhuiyan, A.K.M.S. Azad, N. Akther, Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. Current Chemistry Letters 6(1) (2017) 31-40. https://doi.org/10.5267/j.ccl.2016.10.001
  • M.M. Matin, A.R. Nath, O. Saad, M.M.H. Bhuiyan, F.A. Kadir, S.B. Abd Hamid, A.A. Alhadi, M.E. Ali, W.A. Yehye, Synthesis, PASS-predication and in vitro antimicrobial activity of benzyl 4-O-benzoyl-α-L-rhamnopyranoside derivatives. International Journal of Molecular Sciences 17(9) (2016) 1412. https://doi.org/10.3390/ijms17091412
  • M.M. Matin, Synthesis and antimicrobial study of some methyl 4-O-palmitoyl-α-L-rhamnopyranoside derivatives. Orbital: The Electronic Journal of Chemistry 6(1) (2014) 20-28. https://doi.org/10.17807/orbital.v6i1.553
  • M.M. Matin, M.Z. Iqbal, Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, characterization, and thermodynamic studies. Orbital: The Electronic Journal of Chemistry 13(1) (2021) 19-27. http://dx.doi.org/10.17807/orbital.v13i1.1532
  • M.M. Matin, N. Islam, A. Siddika, S.C. Bhattacharjee, Regioselective synthesis of some rhamnopyranoside esters for PASS predication, and ADMET studies. Journal of the Turkish Chemical Society Section A: Chemistry 8(1) (2021) 363-374. https://doi.org/10.18596/jotcsa.829658
  • MM Matin, M Uzzaman, SA Chowdhury, MMH Bhuiyan, In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics (2020). https://doi.org/10.1080/07391102.2020.1850358.
  • A.K.M.S. Kabir, M.M. Matin, Regioselective monoacylation of a derivative of L-rhamnose. Journal of Bangladesh Academy of Sciences 21(1) (1997) 83-88.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09W, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.
  • A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  • C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physics Review B37 (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785
  • R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics 54 (1971) 724. http://dx.doi.org/10.1063/1.1674902
  • W.J. Hehre, R. Ditchfield, J.A. Pople, Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. The Journal of Chemical Physics 56 (1972) 2257-2261. http://dx.doi.org/10.1063/1.1677527
  • T. Sawada, T. Hashimoto, H. Nakano, M. Shigematsu, H. Ishida, M. Kiso, Conformational study of α-N-acetyl-D-neuraminic acid by density functional theory. Journal of Carbohydrate Chemistry 25(5) (2006) 387-405. http://dx.doi.org/10.1080/07328300600778801
  • M.A. Shalaby, F.R. Fronczek, E.S. Younathan, Structural analysis of methyl α-L-rhamnopyranoside in the solid state. Carbohydrate Research 258 (1994) 267-274. https://doi.org/10.1016/0008-6215(94)84092-X
  • M.A. Shalaby, F.R. Fronczek, E.S. Younathan, Conformational features of rhamnopyranose derivatives: The molecular structure of methyl 2,3,4-tri-O-acetyl-α-L-rhamnopyranoside. Carbohydrate Research 264(2) (1994) 173-180. https://doi.org/10.1016/S0008-6215(05)80003-5
  • I. Noorbatcha, S. Hassan, A. Hamid, A. Hadi, K. Awang, Ab-initio geometry-optimization and NMR studies of chemical constituents of Piper sarmentosum. Malaysian Journal of Science 21 (2002) 143-147.
  • A. Kumer, M.N. sarker, S. Paul, The Thermophysical, HOMO, LUMO, vibrational spectroscopy and QSAR study of morpholinium formate and acetate ionic liquid salts using computational method. Turkish Computational and Theoretical Chemistry 3(2) (2019) 59-68.
  • M. Ali, M.H. Karim, M.M. Matin, Efficient synthetic technique, PASS predication, and ADMET studies of acylated n-octyl glucopyranosides. Journal of Applied Science & Process Engineering 8(1) (2021) 648-659. https://doi.org/10.33736/jaspe.2823.2021
  • R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA., 83 (1986) 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
  • T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1 (1934) 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. Journal of the American Chemical Society 121 (1999) 1922-1924. https://doi.org/10.1021/ja983494x
  • R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105 (1983) 7512-7516. https://doi.org/10.1021/ja00364a005

The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study

Yıl 2021, Cilt 5, Sayı 1, 39 - 50, 15.06.2021
https://doi.org/10.33435/tcandtc.914768

Öz

Carbohydrate fatty acid (CFA) esters especially rhamnopyranoside esters having both the hydrophilic and lipophilic nature showed broader applications including anticancer activities. It was reported that appropriate conformation is needed for better activities and conformational distortion reduced antimicrobial functionality. In this context, two different esters series of benzyl α-L-rhamnopyranosides, one with 2,3-O-acetonide group and the other one without acetonide group, were subjected for the density functional theory (DFT) optimization. The optimized structures with 2,3-O-acetonide rhamnopyranoside clearly showed distortion from the regular 1C4 chair conformation while rhamnopyranoside esters without 2,3-O-acetonide functionality exhibited almost regular 1C4 chair conformation. Also, the number and position of acyl group(s) present in the benzyl rhamnopyranoside imposes a small effect on their pyranose chair conformation. Thermodynamic properties including frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) of both the series of rhamnopyranosides are also discussed which indicated that 4-O-acyl rhamnopyranosides are more reactive than the 3-O-acyl analogues.

Kaynakça

  • R. Hevey, Strategies for the development of glycomimetic drug candidates. Pharmaceuticals 12(2) (2019) 55. https://doi.org/10.3390/ph12020055
  • H.M. Ei-Laithy, O. Shoukry, L.G.Mahran, Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. European Journal of Pharmaceutics and Biopharmaceutics 77 (2011) 43-55. https://doi.org/10.1016/j.ejpb.2010.10.011
  • D.D. Dhavale, M.M. Matin, Selective sulfonylation of 4-C-hyroxymethyl--L-threo-pento-1,4-furanose: Synthesis of bicyclic diazasugars. Tetrahedron 60(19) (2004) 4275-4281. https://doi.org/10.1016/j.tet.2004.03.034
  • D.D. Dhavale, M.M. Matin, T. Sharma, S.G. Sabharwal, Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido[1,2-a]pyrimidine and octahydro-imidazo[1,2-a]pyridine bicyclic diazasugars. Bioorganic & Medicinal Chemistry 12 (2004) 4039-4044. https://doi.org/10.1016/j.bmc.2004.05.030
  • A.M. Gumel, M.S.M. Annuar, T. Heidelberg, Y. Chisti, Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry 46 (2011) 2079-90. https://doi.org/10.1016/j.procbio.2011.07.021
  • M.M. Matin, P. Chakraborty, M.S. Alam, M.M. Islam, U. Hanee, Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydrate Research 496 (2020) 108130. https://doi.org/10.1016/j.carres.2020.108130
  • Y.L. Teng, S.G. Stewart, Y.W. Hai, X. Li, M.G. Banwell, P. Lan, Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles. Critical Reviews in Food Science and Nutrition 2020. https://doi.org/10.1080/10408398.2020.1798346
  • M.M. Matin, S.C. Bhattacharjee, P. Chakraborty, M.S. Alam, Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydrate Research 485 (2019) 107812. https://doi.org/10.1016/j.carres.2019.107812
  • M.M. Matin, M.M.H. Bhuiyan, A.K.M.S. Azad, M.H.O. Rashid, Synthesis of 6-O-stearoyl-1,2-O-isopropylidene-α-D-gluco-furanose derivatives for antimicrobial evaluation. Journal of Physical Science 26(1) (2015) 1-12.
  • D.R. Perinelli, S. Lucarini, L. Fagioli, R. Campana, D. Vllasaliu, A. Duranti, L. Casettari, Lactose oleate as new biocompatible surfactant for pharmaceutical applications. European Journal of Pharmaceutics and Biopharmaceutics 124 (2018) 55-62. https://doi.org/10.1016/j.ejpb.2017.12.008
  • A.V. Demchenko, Stereoselective chemical 1,2-cis O-glycosylation: From ‘Sugar Ray’ to modern techniques of the 21st century. Synlett (2003) 1225-1240. https://doi.org/10.1055/s-2003-40349
  • D. Crich, Chemistry of glycosyl triflates:Synthesis of β-mannopyranosides. Journal of Carbohydrate Chemistry 21 (2002) 663-686. https://doi.org/10.1081/CAR-120016486
  • M.M. Matin, M.M.H. Bhuiyan, E. Kabir, A.F.M. Sanaullah, M.A. Rahman, M.E. Hossain, M. Uzzaman, Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. Journal of Molecular Structure 1195 (2019) 189-197. https://doi.org/10.1016/j.molstruc.2019.05.102
  • B. Ren, L. Zhang, M. Zhang, Progress on selective acylation of carbohydrate hydroxyl groups. Asian Journal Organic Chemistry 8 (2019) 1813-1823. https://doi.org/10.1002/ajoc.201900400
  • M.M. Matin, T. Sharma, S.G. Sabharwal, D.D. Dhavale, Synthesis and evaluation of glycosidase inhibitory activity of 5-hydroxy substituted isofagomine analogues. Organic & Biomolecular Chemistry 3 (2005) 1702-1707. https://doi.org/10.1039/b418283a
  • M.M. Matin, P. Chakraborty, Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. Journal of Applied Science & Process Engineering 7(2) (2020) 572-586. https://doi.org/10.33736/jaspe.2603.2020
  • A.R. Buzatu, A.E. Frissen, L.A.M. van den Broek, A. Todea, M. Motoc, C.G. Boeriu, Chemoenzymatic synthesis of new aromatic esters of mono- and oligosaccharides. Processes 8 (2020) 1638. https://doi.org/10.3390/pr8121638
  • M.M. Matin, M.S. Hasan, M. Uzzaman, M.M.H. Bhuiyan, S.M. Kibria, M.E. Hossain, M.H.O. Roshid, Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. Journal of Molecular Structure 1222 (2020) 128821. https://doi.org/10.1016/j.molstruc.2020.128821
  • A. Richel, P. Laurent, B. Wathelet, J.–P. Wathelet, M. Paquot, Microwave-assisted conversion of carbohydrates. State of the art and outlook. Comptes Rendus Chimie 14 (2011) 224-234. https://doi.org/10.1016/j.crci.2010.04.004
  • S.R. Kim, Y.C. Kim, Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. Phytochemistry 54 2000, 503-509. https://doi.org/10.1016/s0031-9422(00)00110-2
  • X.Z. Dong, C.L. Huang, B.Y. Yu, Y. Hu, L.H. Mu, P. Liu, Effect of Tenuifoliside A isolated from Polygala tenuifolia on the ERK and PI3K pathways in C6 glioma cells. Phytomedicine 21 (2014) 1178-1188. https://doi.org/10.1016/j.phymed.2014.04.022
  • Y. Tian, W. Liu, Y. Lu, Y. Wang, X. Chen, S. Bai, Y. Zhao, T. He, F. Lao, Y. Shang, Y. Guo, G. She, Naturally occurring cinnamic acid sugar ester derivatives. Molecules 21 (2016) 1402. https://doi.org/10.3390/molecules21101402
  • M. Mihoub, A. Pichette, B. Sylla, C. Gauthier, J. Legault, Bidesmosidic betulin saponin bearing L-rhamnopyranoside moieties induces apoptosis and inhibition of lung cancer cells growth in vitro and in vivo. PLoS ONE 13(3) (2018) 0193386. https://doi.org/10.1371/journal.pone.0193386
  • A.K.M.S. Kabir, M.M. Matin, A. Hossain, M.A. Sattar, Synthesis and antimicrobial activities of some rhamnopyranoside derivatives. Journal of Bangladesh Chemical Society 16(2) 2003, 85-93.
  • M.M. Matin, M. Ibrahim, Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. Journal of Applied Sciences Research 6(10) (2010) 1527-1532.
  • M.M. Matin, M. Ibrahim, M.S. Rahman, Antimicrobial evaluation of methyl 4-O-acetyl-α-L-rhamnopyranoside derivatives. The Chittagong University Journal of Biological Sciences 3(1&2) (2008) 33-43. http://dx.doi.org/10.3329/cujbs.v3i1.13404
  • M.M. Matin, M.H.O. Roshid, S.C. Bhattacharjee, A.K.M.S. Azad, PASS predication, antiviral, in vitro antimicrobial, and ADMET studies of rhamnopyranoside esters. Medical Research Archives 8(7) (2020) 2165. https://doi.org/10.18103/mra.v8i7.2165
  • J. Qian, D. Hunkler, H. Rimpler, Iridoid-related aglycone and its glycosides from Scrophularia ningpoensis. Phytochemistry 31 (1992) 905-911. https://doi.org/10.1016/0031-9422(92)80037-F
  • J.A. Duck, E.S. Ayensu, 1985, Medical Plants of China. Algonac, MI, p. 599.
  • F.O. Akong, S. Bouquillon, Efficient syntheses of bolaform surfactants from l-rhamnose and/or 3-(4-hydroxyphenyl)propionic acid. Green Chemistry 17 (2015) 3290-3300. https://doi.org/10.1039/C5GC00448A
  • X.–D. Yang, Z.–Y. Li, S.–X. Mei, J.–F. Zhao, H.–B. Zhang, L. Li, Two new phenylpropanoid esters of rhamnose from Lagotis yunnanensis. Journal of Asian Natural Products Research 5(3) (2003) 223-226. https://doi.org/10.1080/1028602031000093366
  • G.M. Lipkind, A.S. Shashkov, O.A. Nechaev, V.I. Torgov, V.N. Shibaev, N.K. Kochetkov, Conformations of branched trisaccharides with vicinal substitution according to the nuclear Overhauser effect and theoretical calculations. III. The spectra of 13C-NMR and trisaccharides conformation with galactose residue in a node branching. Bioorg. Khim. 15 (1989) 1366-1374.
  • G.M. Lipkind, N.E. Nifantev, A.S. Shashkov, N.K. Kochetkov, NMR and conformational study of branched oligosaccharides containing 2,3-disubstituted residues of α-L-rhamnose. Canadian Journal of Chemistry 68 (1990) 1238-1250. https://doi.org/10.1139/v90-192
  • R. Pendrill, L. Eriksson, G. Widmalma, Methyl 4-O-benzyl-α-L-rhamnopyranoside. Acta Crystallographica Section E 70 (2014) o561–o562. https://doi.org/10.1107/S1600536814007922
  • R.A. Mendes, S.K.C. Almeida, I.N. Soares, C.A. Barboza, R.G. Freitas, A. Brown, G.L.C. de Souza, A computational investigation on the antioxidant potential of myricetin 3,4-di-O-α-L-rhamnopyranoside. Journal of Molecular Modeling 24 (2018) 133. https://doi.org/10.1007/s00894-018-3663-2
  • M.M. Matin, M.M.H. Bhuiyan, A.K.M.S. Azad, N. Akther, Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. Current Chemistry Letters 6(1) (2017) 31-40. https://doi.org/10.5267/j.ccl.2016.10.001
  • M.M. Matin, A.R. Nath, O. Saad, M.M.H. Bhuiyan, F.A. Kadir, S.B. Abd Hamid, A.A. Alhadi, M.E. Ali, W.A. Yehye, Synthesis, PASS-predication and in vitro antimicrobial activity of benzyl 4-O-benzoyl-α-L-rhamnopyranoside derivatives. International Journal of Molecular Sciences 17(9) (2016) 1412. https://doi.org/10.3390/ijms17091412
  • M.M. Matin, Synthesis and antimicrobial study of some methyl 4-O-palmitoyl-α-L-rhamnopyranoside derivatives. Orbital: The Electronic Journal of Chemistry 6(1) (2014) 20-28. https://doi.org/10.17807/orbital.v6i1.553
  • M.M. Matin, M.Z. Iqbal, Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, characterization, and thermodynamic studies. Orbital: The Electronic Journal of Chemistry 13(1) (2021) 19-27. http://dx.doi.org/10.17807/orbital.v13i1.1532
  • M.M. Matin, N. Islam, A. Siddika, S.C. Bhattacharjee, Regioselective synthesis of some rhamnopyranoside esters for PASS predication, and ADMET studies. Journal of the Turkish Chemical Society Section A: Chemistry 8(1) (2021) 363-374. https://doi.org/10.18596/jotcsa.829658
  • MM Matin, M Uzzaman, SA Chowdhury, MMH Bhuiyan, In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics (2020). https://doi.org/10.1080/07391102.2020.1850358.
  • A.K.M.S. Kabir, M.M. Matin, Regioselective monoacylation of a derivative of L-rhamnose. Journal of Bangladesh Academy of Sciences 21(1) (1997) 83-88.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09W, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.
  • A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  • C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physics Review B37 (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785
  • R. Ditchfield, W. J. Hehre, and J. A. Pople, Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics 54 (1971) 724. http://dx.doi.org/10.1063/1.1674902
  • W.J. Hehre, R. Ditchfield, J.A. Pople, Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. The Journal of Chemical Physics 56 (1972) 2257-2261. http://dx.doi.org/10.1063/1.1677527
  • T. Sawada, T. Hashimoto, H. Nakano, M. Shigematsu, H. Ishida, M. Kiso, Conformational study of α-N-acetyl-D-neuraminic acid by density functional theory. Journal of Carbohydrate Chemistry 25(5) (2006) 387-405. http://dx.doi.org/10.1080/07328300600778801
  • M.A. Shalaby, F.R. Fronczek, E.S. Younathan, Structural analysis of methyl α-L-rhamnopyranoside in the solid state. Carbohydrate Research 258 (1994) 267-274. https://doi.org/10.1016/0008-6215(94)84092-X
  • M.A. Shalaby, F.R. Fronczek, E.S. Younathan, Conformational features of rhamnopyranose derivatives: The molecular structure of methyl 2,3,4-tri-O-acetyl-α-L-rhamnopyranoside. Carbohydrate Research 264(2) (1994) 173-180. https://doi.org/10.1016/S0008-6215(05)80003-5
  • I. Noorbatcha, S. Hassan, A. Hamid, A. Hadi, K. Awang, Ab-initio geometry-optimization and NMR studies of chemical constituents of Piper sarmentosum. Malaysian Journal of Science 21 (2002) 143-147.
  • A. Kumer, M.N. sarker, S. Paul, The Thermophysical, HOMO, LUMO, vibrational spectroscopy and QSAR study of morpholinium formate and acetate ionic liquid salts using computational method. Turkish Computational and Theoretical Chemistry 3(2) (2019) 59-68.
  • M. Ali, M.H. Karim, M.M. Matin, Efficient synthetic technique, PASS predication, and ADMET studies of acylated n-octyl glucopyranosides. Journal of Applied Science & Process Engineering 8(1) (2021) 648-659. https://doi.org/10.33736/jaspe.2823.2021
  • R.G. Pearson, Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA., 83 (1986) 8440-8441. https://doi.org/10.1073/pnas.83.22.8440
  • T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1 (1934) 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • R.G. Parr, L.V. Szentpaly, S. Liu, Electrophilicity index. Journal of the American Chemical Society 121 (1999) 1922-1924. https://doi.org/10.1021/ja983494x
  • R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105 (1983) 7512-7516. https://doi.org/10.1021/ja00364a005

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Kimya
Bölüm Research Article
Yazarlar

Farzana ISLAM
University of Chittagong
0000-0001-6056-0972
Bangladesh


Md. Rezaur RAHMAN Bu kişi benim
Universiti Malaysia Sarawak
0000-0002-7151-0687
Malaysia


Mohammed Mahbubul MATİN (Sorumlu Yazar)
University of Chittagong
0000-0003-4965-2280
Bangladesh

Destekleyen Kurum Research and Publication Cell, University of Chittagong, Bangladesh
Proje Numarası 2021, Special
Teşekkür We are thankful to Mr Ajoy Kumer, European University of Bangladesh for helpful discussion about this study.
Yayımlanma Tarihi 15 Haziran 2021
Başvuru Tarihi 13 Nisan 2021
Kabul Tarihi 4 Mayıs 2021
Yayınlandığı Sayı Yıl 2021, Cilt 5, Sayı 1

Kaynak Göster

Bibtex @araştırma makalesi { tcandtc914768, journal = {Turkish Computational and Theoretical Chemistry}, issn = {2587-1722}, eissn = {2602-3237}, address = {}, publisher = {Koray SAYIN}, year = {2021}, volume = {5}, pages = {39 - 50}, doi = {10.33435/tcandtc.914768}, title = {The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study}, key = {cite}, author = {Islam, Farzana and Rahman, Md. Rezaur and Matin, Mohammed Mahbubul} }
APA Islam, F. , Rahman, M. R. & Matin, M. M. (2021). The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study . Turkish Computational and Theoretical Chemistry , 5 (1) , 39-50 . DOI: 10.33435/tcandtc.914768
MLA Islam, F. , Rahman, M. R. , Matin, M. M. "The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study" . Turkish Computational and Theoretical Chemistry 5 (2021 ): 39-50 <https://dergipark.org.tr/tr/pub/tcandtc/issue/60170/914768>
Chicago Islam, F. , Rahman, M. R. , Matin, M. M. "The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study". Turkish Computational and Theoretical Chemistry 5 (2021 ): 39-50
RIS TY - JOUR T1 - The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study AU - Farzana Islam , Md. Rezaur Rahman , Mohammed Mahbubul Matin Y1 - 2021 PY - 2021 N1 - doi: 10.33435/tcandtc.914768 DO - 10.33435/tcandtc.914768 T2 - Turkish Computational and Theoretical Chemistry JF - Journal JO - JOR SP - 39 EP - 50 VL - 5 IS - 1 SN - 2587-1722-2602-3237 M3 - doi: 10.33435/tcandtc.914768 UR - https://doi.org/10.33435/tcandtc.914768 Y2 - 2021 ER -
EndNote %0 Turkish Computational and Theoretical Chemistry The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study %A Farzana Islam , Md. Rezaur Rahman , Mohammed Mahbubul Matin %T The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study %D 2021 %J Turkish Computational and Theoretical Chemistry %P 2587-1722-2602-3237 %V 5 %N 1 %R doi: 10.33435/tcandtc.914768 %U 10.33435/tcandtc.914768
ISNAD Islam, Farzana , Rahman, Md. Rezaur , Matin, Mohammed Mahbubul . "The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study". Turkish Computational and Theoretical Chemistry 5 / 1 (Haziran 2021): 39-50 . https://doi.org/10.33435/tcandtc.914768
AMA Islam F. , Rahman M. R. , Matin M. M. The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Comp Theo Chem (TC&TC). 2021; 5(1): 39-50.
Vancouver Islam F. , Rahman M. R. , Matin M. M. The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Computational and Theoretical Chemistry. 2021; 5(1): 39-50.
IEEE F. Islam , M. R. Rahman ve M. M. Matin , "The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study", Turkish Computational and Theoretical Chemistry, c. 5, sayı. 1, ss. 39-50, Haz. 2021, doi:10.33435/tcandtc.914768

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)