Year 2026,
Volume: 10 Issue: 1, 131 - 145
Imelda Imelda
,
Syukri Syukri
,
Admi Admi
,
Reshiva Reshiva
,
Elvira Deswita
References
-
[1] Y. Khaddam, R. Kacimi, A. Azaid, M. Bouachrine, and H. Maghat, Molecular design of D-π-A-π-D conjugated molecules based on carbazole for application in solar cells, 14 (1) (2023), 205–220.
-
[2] L. Mao et al., Introducing thiophene and benzothiadiazole groups in triphenylamine-based organic dyes with rigidly fused π-bridge to design high-efficiency solar cells: A theoretical investigation, Solar Energy, 225 (2021), 323-332.
-
[3] S. A. H. Vuai, M. S. Khalfan, and N. S. Babu, DFT and TD-DFT studies for optoelectronic properties of coumarin based donor-π-acceptor (D-π-A) dyes: applications in dye-sensitized solar cells (DSSCS), Heliyon, 7 (11) (2021), p. e08339.
-
[4] S. I. M. Imelda, Emdeniz, Rekayasa Struktur Akseptor Pada Zat Warna Organik Tipe D- Π -a Dengan Kerangka Tiofen, J. Res. Educ. Chem., 2(1) (2020), p. 30.
-
[5] A. Noor, M. Hamdini, S. Ramadina, and Y. Tiandho, Model dye-sensitized solar cell dan aplikasinya berdasarkan data temperatur harian: studi kasus pangkalpinang, Jurnal Pendidikan Fisika dan Keilmuan, 6(2) (2020), p.131.
-
[6] A. Daniswara, G. Raydiska, and Y. Timotius, strategi implementasi dye sensitized solar cell (DSSC) di indonesia, J. Offshore Oil, Prod. Facil. Renew. Energy, 4(2) (2020), 9-15.
-
[7] A. Tripathi, A. Ganjoo, and P. Chetti, Influence of internal acceptor and thiophene based π-spacer in D-A-π-A system on photophysical and charge transport properties for efficient DSSCs: A DFT insight, Solar Energy, 209 (2020), 194–205.
-
[8] R. A. P. Imelda, Optimalisasi struktur Π-konjugasi pada zat warna organik tipe D-Π-A, J. Res. Educ. Chem., 2(2) (2020) 61.
-
[9] Imelda and H. Aziz, Modifikasi struktur zat warna berbasis trifenilamin untuk meningkatkan kinerja dye-sensitized solar cells (DSSCs): metode DFT, J. Res. Educ. Chem., 4(1) (2022), 34-49.
-
[10] S. Fan, Z. R. Sun, H. Shi, W. J. Fan, D. Z. Tan, and Y. G. Chen, Modification of benzoindenothiophene-based organic dye with fused thiophenes for efficient dye-sensitized solar cells, J. Mol. Graph. Model., 115 (2022), 108214.
-
[11] A. Azaid, T. Abram, R. Kacimi, A. Sbai, T. Lakhlifi, and M. Bouachrine, Organic materials based with D-π-A structure based on thiophene and anthracene for application in dye-sensitized solar cells, Mater. Today Proc., 45 (2021), 7363–7369.
-
[12] I. Ouared and M. Rekis, Efficient triphenyleamine-based organic sensitizers for dye sensitized solar cells: density functional theory study, Comput. Theor. Chem., 1202 (2021).
-
[13] Imelda, Emriadi, H. Aziz, A. Santoni, and N. Utami, The modification of cyanidin based dyes to improve the performance of dye-sensitized solar cells (DSSCs), Rasayan J. Chem., 13(1) (2020), 121–130.
-
[14] Y. H. Lu, R. R. Liu, K. L. Zhu, Y. L. Song, and Z. Y. Geng, Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells, Mater. Chem. Phys., 181 (2016) 284–294.
-
[15] S. O. Afolabi, B. Semire, and M. A. Idowu, Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations, Heliyon, 7(4) (2021), e06827.
-
[16] O. Britel, A. Fitri, A. T. Benjelloun, A. Slimi, M. Benzakour, and M. Mcharfi, Theoretical investigation of the influence of π-spacer on photovoltaic performances in carbazole-based dyes for dye-sensitized solar cells applications, J. Photochem. Photobiol. A Chem., 428 (2022), 113870.
-
[17] O. Britel, A. Fitri, A. Touimi Benjelloun, A. Slimi, M. Benzakour, and M. Mcharfi, Theoretical design of new carbazole based organic dyes for DSSCs applications. A DFT/TD-DFT insight, J. Photochem. Photobiol. A Chem., 429 (2022), 113902.
-
[18] N. Wazzan and A. Irfan, Promising architectures modifying the D-π-A architecture of sensitizers in dye-sensitized solar cells : A DFT study, Mater. Sci. Semicond. Process., 120 (2020), 105260.
-
[19] Z. Sun, M. He, K. Chaitanya, and X. Ju, “Theoretical studies on D-A- π -A and D- ( A- π -A ) 2 dyes with thiophene-based acceptor for high performance p -type dye-sensitized solar cells,” Mater. Chem. Phys., 248 (2020).
-
[20] K. Sarikavak, G. Kurtay, F. Sevin, and M. Güllü, Molecular engineering of thienothiophene or dithienopyrrole-based π -spacers for dye-sensitized solar cells ( DSSCs ) with D-π-A architecture : A DFT / TD-DFT study, Comput. Theor. Chem., 1201 (2021), 113275.
-
[21] R. El et al., Physica B : Physics of condensed matter DFT , DFTB and TD-DFT theoretical investigations of π -conjugated molecules based on thieno [ 2 , 3-b ] indole for dye-sensitized solar cell applications, Phys. B Phys. Condens. Matter, 636 (2022), 413850.
-
[22] P. Gunawardhana, Y. Balasooriya, M. S. Kandanapitiye, and Y. C. Chau, applied sciences optoelectronic characterization of natural dyes in the quest for enhanced performance in dye-sensitized solar cells : a density functional theory study, (2024).
-
[23] G. R. Kandregula, S. Mandal, and K. Ramanujam, “Molecular engineering of near-infrared active boron dipyrromethene moiety with various donors and acceptors for tuning the absorption behavior and electron injection of the resultant dyes,” J. Photochem. Photobiol. A Chem.,140 (2021), 113161.
-
[24] Imelda, Emriadi, H. Aziz, and A. Santoni, computational design of novel coumarin sensitizers to improve the efficiency of solar cells, Moroccan J. Chem., 10(1) (2022).
-
[25] I. Althagafi and N. El-Metwaly, Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719, Arab. J. Chem., 14(4) (2021), 103080.
-
[26] G. Rao, S. Mandal, and C. Mirle, Chemistry A computational approach on engineering short spacer for carbazole-based dyes for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 419 (2021), 113447.
-
[27] M. I. M. Sudarlin, Studi teoritis penggunaan derivasi asam siano sebagai akseptor, 22(4) (2019), 123–128.
-
[28] O. Britel, A. Fitri, A. T. Benjelloun, M. Benzakour, and M. Mcharfi, Carbazole based D- π i - π -A dyes for DSSC applications : DFT / TDDFT study of the influence of π i -spacers on the photovoltaic performance, Chem. Phys., 565 (2022), 111738.
-
[29] C. Yang, T. Liu, P. Song, F. Ma, and Y. Li, Revealing the photoelectric performance and multistep electron transfer mechanism in D-A-π-A dyes coupled with a chlorophyll derivative for co-sensitized solar cells, J. Mol. Liq., 368 (2022), 120797.
-
[30] L. Li et al., Dual-channel D-(π-A)2 phenoxazine/phenothiazine dyes with an auxiliary N-alkoxy benzoic acid anchor for fabrication of dye-sensitized solar cells, Sol. Energy, 225 (2021), 173–183.
-
[31] K. A. Samawi et al., Rational design of different π -bridges and their theoretical impact on indolo, Comput. Theor. Chem., 1212 (2022).
-
[32] K. K. Chenab and M. R. Zamani-Meymian, Developing efficient dye-sensitized solar cells by inclusion of ferrocene and benzene π-bridges into molecular structures of triphenylamine dyes, Mater. Sci. Semicond. Process., 151 (2022), 107018.
-
[33] E. L. M. I, E. K. A, E. L. M. Z, and M. Bouachrine, Theoretical study on new conjugated compounds of organic solar cell : DFT , TD-DFT and AMPS1D, 11 (2023), 1221-1235.
Theoretical Modification on The Structure of Dithiophene-Based Dyes as Sensitizers In Solar Cells
Year 2026,
Volume: 10 Issue: 1, 131 - 145
Imelda Imelda
,
Syukri Syukri
,
Admi Admi
,
Reshiva Reshiva
,
Elvira Deswita
Abstract
One of the key parameters in designing DSSCs is the dye, which plays a crucial role in absorbing light. This study aims to modify the structure of D-π-A type dyes based on dithiophene with variations in the donor chain. The donor chains used were phenol, aniline, indoline, diphenylamine, coumarin, and toluene, symbolized as T1, T2, T3, T4, T5, and T6. The acceptor chain used was cyanoacetic acid. Calculations were performed using the Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) methods with the B3LYP/6-31G basis set. The study results indicated that all modified dyes were potential sensitizers because they can absorb light in the visible to infrared (IR) regions. The T3 dye, with an indoline donor chain, was the best dye to be used as a sensitizer, with a bandgap value of 1.7149 eV, a maximum wavelength (λ) of 939.43 nm, excitation energy of 1.3198 eV, ΔGinj of -04250 eV, ΔGreg of 0.0948 eV, and a VOC value of 08201 eV
Ethical Statement
Our articles that have been submitted for review are original or free from fabrication, falsification, plagiarism, duplication, fragmentation/copyright violation of data/content.
Supporting Institution
This research was funded by the Andalas University Research Institute
Thanks
Thank you to the Andalas University Research Institute for financial assistance.
References
-
[1] Y. Khaddam, R. Kacimi, A. Azaid, M. Bouachrine, and H. Maghat, Molecular design of D-π-A-π-D conjugated molecules based on carbazole for application in solar cells, 14 (1) (2023), 205–220.
-
[2] L. Mao et al., Introducing thiophene and benzothiadiazole groups in triphenylamine-based organic dyes with rigidly fused π-bridge to design high-efficiency solar cells: A theoretical investigation, Solar Energy, 225 (2021), 323-332.
-
[3] S. A. H. Vuai, M. S. Khalfan, and N. S. Babu, DFT and TD-DFT studies for optoelectronic properties of coumarin based donor-π-acceptor (D-π-A) dyes: applications in dye-sensitized solar cells (DSSCS), Heliyon, 7 (11) (2021), p. e08339.
-
[4] S. I. M. Imelda, Emdeniz, Rekayasa Struktur Akseptor Pada Zat Warna Organik Tipe D- Π -a Dengan Kerangka Tiofen, J. Res. Educ. Chem., 2(1) (2020), p. 30.
-
[5] A. Noor, M. Hamdini, S. Ramadina, and Y. Tiandho, Model dye-sensitized solar cell dan aplikasinya berdasarkan data temperatur harian: studi kasus pangkalpinang, Jurnal Pendidikan Fisika dan Keilmuan, 6(2) (2020), p.131.
-
[6] A. Daniswara, G. Raydiska, and Y. Timotius, strategi implementasi dye sensitized solar cell (DSSC) di indonesia, J. Offshore Oil, Prod. Facil. Renew. Energy, 4(2) (2020), 9-15.
-
[7] A. Tripathi, A. Ganjoo, and P. Chetti, Influence of internal acceptor and thiophene based π-spacer in D-A-π-A system on photophysical and charge transport properties for efficient DSSCs: A DFT insight, Solar Energy, 209 (2020), 194–205.
-
[8] R. A. P. Imelda, Optimalisasi struktur Π-konjugasi pada zat warna organik tipe D-Π-A, J. Res. Educ. Chem., 2(2) (2020) 61.
-
[9] Imelda and H. Aziz, Modifikasi struktur zat warna berbasis trifenilamin untuk meningkatkan kinerja dye-sensitized solar cells (DSSCs): metode DFT, J. Res. Educ. Chem., 4(1) (2022), 34-49.
-
[10] S. Fan, Z. R. Sun, H. Shi, W. J. Fan, D. Z. Tan, and Y. G. Chen, Modification of benzoindenothiophene-based organic dye with fused thiophenes for efficient dye-sensitized solar cells, J. Mol. Graph. Model., 115 (2022), 108214.
-
[11] A. Azaid, T. Abram, R. Kacimi, A. Sbai, T. Lakhlifi, and M. Bouachrine, Organic materials based with D-π-A structure based on thiophene and anthracene for application in dye-sensitized solar cells, Mater. Today Proc., 45 (2021), 7363–7369.
-
[12] I. Ouared and M. Rekis, Efficient triphenyleamine-based organic sensitizers for dye sensitized solar cells: density functional theory study, Comput. Theor. Chem., 1202 (2021).
-
[13] Imelda, Emriadi, H. Aziz, A. Santoni, and N. Utami, The modification of cyanidin based dyes to improve the performance of dye-sensitized solar cells (DSSCs), Rasayan J. Chem., 13(1) (2020), 121–130.
-
[14] Y. H. Lu, R. R. Liu, K. L. Zhu, Y. L. Song, and Z. Y. Geng, Theoretical study on the application of double-donor branched organic dyes in dye-sensitized solar cells, Mater. Chem. Phys., 181 (2016) 284–294.
-
[15] S. O. Afolabi, B. Semire, and M. A. Idowu, Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations, Heliyon, 7(4) (2021), e06827.
-
[16] O. Britel, A. Fitri, A. T. Benjelloun, A. Slimi, M. Benzakour, and M. Mcharfi, Theoretical investigation of the influence of π-spacer on photovoltaic performances in carbazole-based dyes for dye-sensitized solar cells applications, J. Photochem. Photobiol. A Chem., 428 (2022), 113870.
-
[17] O. Britel, A. Fitri, A. Touimi Benjelloun, A. Slimi, M. Benzakour, and M. Mcharfi, Theoretical design of new carbazole based organic dyes for DSSCs applications. A DFT/TD-DFT insight, J. Photochem. Photobiol. A Chem., 429 (2022), 113902.
-
[18] N. Wazzan and A. Irfan, Promising architectures modifying the D-π-A architecture of sensitizers in dye-sensitized solar cells : A DFT study, Mater. Sci. Semicond. Process., 120 (2020), 105260.
-
[19] Z. Sun, M. He, K. Chaitanya, and X. Ju, “Theoretical studies on D-A- π -A and D- ( A- π -A ) 2 dyes with thiophene-based acceptor for high performance p -type dye-sensitized solar cells,” Mater. Chem. Phys., 248 (2020).
-
[20] K. Sarikavak, G. Kurtay, F. Sevin, and M. Güllü, Molecular engineering of thienothiophene or dithienopyrrole-based π -spacers for dye-sensitized solar cells ( DSSCs ) with D-π-A architecture : A DFT / TD-DFT study, Comput. Theor. Chem., 1201 (2021), 113275.
-
[21] R. El et al., Physica B : Physics of condensed matter DFT , DFTB and TD-DFT theoretical investigations of π -conjugated molecules based on thieno [ 2 , 3-b ] indole for dye-sensitized solar cell applications, Phys. B Phys. Condens. Matter, 636 (2022), 413850.
-
[22] P. Gunawardhana, Y. Balasooriya, M. S. Kandanapitiye, and Y. C. Chau, applied sciences optoelectronic characterization of natural dyes in the quest for enhanced performance in dye-sensitized solar cells : a density functional theory study, (2024).
-
[23] G. R. Kandregula, S. Mandal, and K. Ramanujam, “Molecular engineering of near-infrared active boron dipyrromethene moiety with various donors and acceptors for tuning the absorption behavior and electron injection of the resultant dyes,” J. Photochem. Photobiol. A Chem.,140 (2021), 113161.
-
[24] Imelda, Emriadi, H. Aziz, and A. Santoni, computational design of novel coumarin sensitizers to improve the efficiency of solar cells, Moroccan J. Chem., 10(1) (2022).
-
[25] I. Althagafi and N. El-Metwaly, Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719, Arab. J. Chem., 14(4) (2021), 103080.
-
[26] G. Rao, S. Mandal, and C. Mirle, Chemistry A computational approach on engineering short spacer for carbazole-based dyes for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 419 (2021), 113447.
-
[27] M. I. M. Sudarlin, Studi teoritis penggunaan derivasi asam siano sebagai akseptor, 22(4) (2019), 123–128.
-
[28] O. Britel, A. Fitri, A. T. Benjelloun, M. Benzakour, and M. Mcharfi, Carbazole based D- π i - π -A dyes for DSSC applications : DFT / TDDFT study of the influence of π i -spacers on the photovoltaic performance, Chem. Phys., 565 (2022), 111738.
-
[29] C. Yang, T. Liu, P. Song, F. Ma, and Y. Li, Revealing the photoelectric performance and multistep electron transfer mechanism in D-A-π-A dyes coupled with a chlorophyll derivative for co-sensitized solar cells, J. Mol. Liq., 368 (2022), 120797.
-
[30] L. Li et al., Dual-channel D-(π-A)2 phenoxazine/phenothiazine dyes with an auxiliary N-alkoxy benzoic acid anchor for fabrication of dye-sensitized solar cells, Sol. Energy, 225 (2021), 173–183.
-
[31] K. A. Samawi et al., Rational design of different π -bridges and their theoretical impact on indolo, Comput. Theor. Chem., 1212 (2022).
-
[32] K. K. Chenab and M. R. Zamani-Meymian, Developing efficient dye-sensitized solar cells by inclusion of ferrocene and benzene π-bridges into molecular structures of triphenylamine dyes, Mater. Sci. Semicond. Process., 151 (2022), 107018.
-
[33] E. L. M. I, E. K. A, E. L. M. Z, and M. Bouachrine, Theoretical study on new conjugated compounds of organic solar cell : DFT , TD-DFT and AMPS1D, 11 (2023), 1221-1235.