Research Article
BibTex RIS Cite

Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors

Year 2026, Volume: 10 Issue: 2, 54 - 65

Abstract

Currently, the rise and dissemination of resistance to antimalarial drugs pose a significant global challenge. There is an ongoing effort to discover novel compounds for the development of new antimalarial therapies. This study aimed to evaluate harmicine derivatives known for their antimalarial activity and to explore their potential interactions with Plasmodium falciparum, specifically targeting the crucial falcipain-2 enzyme in the parasite's life cycle. Molecular docking and dynamics studies showed that compound 6f interacted with the binding site of the enzyme and stayed stable for 100 ns, the best of the derivatives. It had a binding affinity score of -8.4, higher than chloroquine (-5.5). This means that it might be better than chloroquine at inhibiting falcipain-2. Additionally, compound 6f successfully passed Lipinski's Rule of Five, suggesting its potential for oral use. Researchers found that the results of this study could help make new, stronger Harmicines with better antiplasmodial activities. This could lead to the creation of very effective medicines that fight malaria

References

  • [1] World Health Organization, World malaria report 2022, Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/teams/global-malaria-programme, Accessed: Apr. 28, 2024.
  • [2] Kemenkes, Laporan Tahunan 2022 Malaria, 2023. https://malaria.kemkes.go.id/sites/default/files/2023-11/Laporan%20Tahunan%20Malaria%202022.pdf. Accessed: Apr. 28, 2024
  • [3] World Health Organization, WHO Guidelines for malaria, Licence: CC BY-NC-SA 3.0 IGO., Accessed: Apr. 28, 2024.
  • [4] Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M., Nosten, F. H, Combating multidrug-resistant Plasmodium falciparum malaria, The FEBS journal, 284 (2017) 2569–2578.
  • [5] R. M. Fairhurst, A. M. Dondorp, Artemisinin-Resistant Plasmodium falciparum Malaria, Microbiol Spectr, 4 (2016).
  • [6] K. Haldar, S. Bhattacharjee, I. Safeukui, Drug resistance in Plasmodium, Nature Publishing Group, 16 (2018) 156-170.
  • [7] K. M. Tun, Imwong, M., Lwin, K. M., Win, A. A., Hlaing, T. M., Hlaing, T., Lin, K., Kyaw, M. P., Plewes, K., Faiz, M. A., Dhorda, M., Cheah, P. Y., Pukrittayakamee, S., Ashley, E. A., Anderson, T. J., Nair, S., McDew-White, M., Flegg, J. A., Grist, E. P., Guerin, P., Woodrow, C. J., Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: A cross-sectional survey of the K13 molecular marker, Lancet Infect Dis, 15 (2015) 415–421.
  • [8] T. Rajguru, D. Bora, M. K. Modi, Identification of promising inhibitors for Plasmodium haemoglobinase Falcipain-2, using virtual screening, molecular docking, and MD Simulation, J Mol Struct, 1248 (2022).
  • [9] K. T. Andrews, G. Fisher, T. S. Skinner-Adams, Drug repurposing and human parasitic protozoan diseases, International journal for parasitology. Drugs and drug resistance, 24 (2014) 95-111.
  • [10] I. Perković, Raić-Malić, S., Fontinha, D., Prudêncio, M., Pessanha de Carvalho, L., Held, J., Tandarić, T., Vianello, R., Zorc, B., & Rajić, Z., Harmicines − harmine and cinnamic acid hybrids as novel antiplasmodial hits, Eur J Med Chem, 187 (2020) 111927.
  • [11] P. J. Rosenthal, Falcipain cysteine proteases of malaria parasites: An update, Biochimica et biophysica acta. Proteins and proteomics, 1868 (2020) 140362.
  • [12] Himangini, D. P. Pathak, V. Sharma, S. Kumar, Designing novel inhibitors against falcipain-2 of Plasmodium falciparum, Bioorg Med Chem Lett, 28 (2018) 1566–1569.
  • [13] N. K. Nkungli, A. D. T. Fouegue, S. N. Tasheh, F. K. Bine, A. U. Hassan, J. N. Ghogomu, In silico investigation of falcipain-2 inhibition by hybrid benzimidazole-thiosemicarbazone antiplasmodial agents: A molecular docking, molecular dynamics simulation, and kinetics study, Molecular Diversity, 28 (2023) 475-496.
  • [14] E. F. Pettersen, Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E., UCSF Chimera - A visualization system for exploratory research and analysis, Journal of Computational Chemistry, 25 (2004) 1605–1612.
  • [15] S. S. Butt, Y. Badshah, M. Shabbir, M. Rafiq, Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians, JMIR Bioinform Biotech, 1 (2020) e14232.
  • [16] Amengor, C. D. K., Biniyam, P. D., Brobbey, A. A., Kekessie, F. K., Zoiku, F. K., Hamidu, S., Gyan, P., Abudey, B. M., N-Substituted Phenylhydrazones Kill the Ring Stage of Plasmodium falciparum, Biomed Research İnternational, vol. 2024 (2024) 6697728.
  • [17] A. W. Mahmud, G. A. Shallangwa, A. Uzairu, In silico modeling of tetraoxane-8-aminoquinoline hybrids active against Plasmodium falciparum, Beni Suef Univ J Basic Appl Sci, 9 (2020).
  • [18] M. Aswad, R. Nugraha, R. Yulianty, Ismail, Y.M. evary, Kasmiati, Z.P. Tachrim, Potency of Bisindoles from Caulerpa racemosa in Handling Diabetes-Related Complications: In silico ADMET Properties and Molecular Docking Simulations, Turkish Computational and Theoretical Chemistry, 8 (2024) 99–107.
  • [19] H. Land, M. S. Humble, YASARA: A tool to obtain structural guidance in biocatalytic investigations, Methods in molecular biology (Clifton, N.J.), 1685 (2018) 43–67.
  • [20] P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, Journal of Physical Chemistry A, 105 (2001) 9954–9960.
  • [21] D. S. F. Ramadhan, Siharis, F., Abdurrahman, S., Isrul, M., & Fakih, T. M., In silico analysis of marine natural product from sponge (Clathria Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease, Journal of Biomolecular Structure & Dynamics, 40 (2022) 11526–11532.
  • [22] H. Rasyid, N. H. Soekamto, S. Firdausiah, R. Mardiyanti, Bahrun, B., Siswanto, S., M.Aswad, W. D. Saputri, A. A. T. Suma, N. H. Syahrir, Revealing the Potency of 1,3,5-Trisubstituted Pyrazoline as Antimalaria Through Combination of in Silico Studies, Sains Malays, 52 (2023) 2855–2867.
  • [23] Y. E. Puspitasari, M. A. Alfikri, R. Sitanggang, J. E. Tambunan, H. Hardoko, In Silico Analysis of Phenolic Compounds from Ceriops decandra Griff. Leaves and Molecular Interaction as Anti Diabetes, Science and Technology Indonesia, 8 (2023) 542–553.
  • [24] Z. Y. Ibrahim, A. Uzairu, G. A. Shallangwa, S. E. Abechi, Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), Futur J Pharm Sci, 7(2021).
  • [25] C. A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods, 44 (2000) 235–249.
  • [26] D. E. V. Pires, T. L. Blundell, D. B. Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J Med Chem, 58 (2015) 4066–4072.
  • [27] F. A. Ramadhani, M. F. Prastika, N. Fikriyah, Isnaeni, N. W. Diyah, Molecular Docking of Flavonoids from Extract of Roselle (Hibiscus sabdariffa L.) Calyx on PBP2a as the Basis for Antibacterial Activity Against Methicillin Resistant Staphylococcus aureus, Science and Technology Indonesia, 9 (2024) 487–493.
  • [28] D. A. E. Pitaloka, D. S. F. Ramadhan, Arfan, L. Chaidir, T. M. Fakih, Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (Inha) inhibitors of mycobacterium tuberculosis, Sci Pharm, 89 (2021).
  • [29] M. Rudrapal, M. P. K. Sowmya, Design, Synthesis, Drug-Likeness Studies and Bio-Evaluation of Some New Chalconeimines, Pharm Chem J, 53 (2019) 814–821.
  • [30] M. Rudrapal, D. Chetia, V. Singh, “Novel series of 1,2,4-trioxane derivatives as antimalarial agents, J Enzyme Inhib Med Chem, 32 (2017) 1159–1173.

Year 2026, Volume: 10 Issue: 2, 54 - 65

Abstract

References

  • [1] World Health Organization, World malaria report 2022, Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/teams/global-malaria-programme, Accessed: Apr. 28, 2024.
  • [2] Kemenkes, Laporan Tahunan 2022 Malaria, 2023. https://malaria.kemkes.go.id/sites/default/files/2023-11/Laporan%20Tahunan%20Malaria%202022.pdf. Accessed: Apr. 28, 2024
  • [3] World Health Organization, WHO Guidelines for malaria, Licence: CC BY-NC-SA 3.0 IGO., Accessed: Apr. 28, 2024.
  • [4] Thu, A. M., Phyo, A. P., Landier, J., Parker, D. M., Nosten, F. H, Combating multidrug-resistant Plasmodium falciparum malaria, The FEBS journal, 284 (2017) 2569–2578.
  • [5] R. M. Fairhurst, A. M. Dondorp, Artemisinin-Resistant Plasmodium falciparum Malaria, Microbiol Spectr, 4 (2016).
  • [6] K. Haldar, S. Bhattacharjee, I. Safeukui, Drug resistance in Plasmodium, Nature Publishing Group, 16 (2018) 156-170.
  • [7] K. M. Tun, Imwong, M., Lwin, K. M., Win, A. A., Hlaing, T. M., Hlaing, T., Lin, K., Kyaw, M. P., Plewes, K., Faiz, M. A., Dhorda, M., Cheah, P. Y., Pukrittayakamee, S., Ashley, E. A., Anderson, T. J., Nair, S., McDew-White, M., Flegg, J. A., Grist, E. P., Guerin, P., Woodrow, C. J., Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: A cross-sectional survey of the K13 molecular marker, Lancet Infect Dis, 15 (2015) 415–421.
  • [8] T. Rajguru, D. Bora, M. K. Modi, Identification of promising inhibitors for Plasmodium haemoglobinase Falcipain-2, using virtual screening, molecular docking, and MD Simulation, J Mol Struct, 1248 (2022).
  • [9] K. T. Andrews, G. Fisher, T. S. Skinner-Adams, Drug repurposing and human parasitic protozoan diseases, International journal for parasitology. Drugs and drug resistance, 24 (2014) 95-111.
  • [10] I. Perković, Raić-Malić, S., Fontinha, D., Prudêncio, M., Pessanha de Carvalho, L., Held, J., Tandarić, T., Vianello, R., Zorc, B., & Rajić, Z., Harmicines − harmine and cinnamic acid hybrids as novel antiplasmodial hits, Eur J Med Chem, 187 (2020) 111927.
  • [11] P. J. Rosenthal, Falcipain cysteine proteases of malaria parasites: An update, Biochimica et biophysica acta. Proteins and proteomics, 1868 (2020) 140362.
  • [12] Himangini, D. P. Pathak, V. Sharma, S. Kumar, Designing novel inhibitors against falcipain-2 of Plasmodium falciparum, Bioorg Med Chem Lett, 28 (2018) 1566–1569.
  • [13] N. K. Nkungli, A. D. T. Fouegue, S. N. Tasheh, F. K. Bine, A. U. Hassan, J. N. Ghogomu, In silico investigation of falcipain-2 inhibition by hybrid benzimidazole-thiosemicarbazone antiplasmodial agents: A molecular docking, molecular dynamics simulation, and kinetics study, Molecular Diversity, 28 (2023) 475-496.
  • [14] E. F. Pettersen, Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., Ferrin, T. E., UCSF Chimera - A visualization system for exploratory research and analysis, Journal of Computational Chemistry, 25 (2004) 1605–1612.
  • [15] S. S. Butt, Y. Badshah, M. Shabbir, M. Rafiq, Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians, JMIR Bioinform Biotech, 1 (2020) e14232.
  • [16] Amengor, C. D. K., Biniyam, P. D., Brobbey, A. A., Kekessie, F. K., Zoiku, F. K., Hamidu, S., Gyan, P., Abudey, B. M., N-Substituted Phenylhydrazones Kill the Ring Stage of Plasmodium falciparum, Biomed Research İnternational, vol. 2024 (2024) 6697728.
  • [17] A. W. Mahmud, G. A. Shallangwa, A. Uzairu, In silico modeling of tetraoxane-8-aminoquinoline hybrids active against Plasmodium falciparum, Beni Suef Univ J Basic Appl Sci, 9 (2020).
  • [18] M. Aswad, R. Nugraha, R. Yulianty, Ismail, Y.M. evary, Kasmiati, Z.P. Tachrim, Potency of Bisindoles from Caulerpa racemosa in Handling Diabetes-Related Complications: In silico ADMET Properties and Molecular Docking Simulations, Turkish Computational and Theoretical Chemistry, 8 (2024) 99–107.
  • [19] H. Land, M. S. Humble, YASARA: A tool to obtain structural guidance in biocatalytic investigations, Methods in molecular biology (Clifton, N.J.), 1685 (2018) 43–67.
  • [20] P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, Journal of Physical Chemistry A, 105 (2001) 9954–9960.
  • [21] D. S. F. Ramadhan, Siharis, F., Abdurrahman, S., Isrul, M., & Fakih, T. M., In silico analysis of marine natural product from sponge (Clathria Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease, Journal of Biomolecular Structure & Dynamics, 40 (2022) 11526–11532.
  • [22] H. Rasyid, N. H. Soekamto, S. Firdausiah, R. Mardiyanti, Bahrun, B., Siswanto, S., M.Aswad, W. D. Saputri, A. A. T. Suma, N. H. Syahrir, Revealing the Potency of 1,3,5-Trisubstituted Pyrazoline as Antimalaria Through Combination of in Silico Studies, Sains Malays, 52 (2023) 2855–2867.
  • [23] Y. E. Puspitasari, M. A. Alfikri, R. Sitanggang, J. E. Tambunan, H. Hardoko, In Silico Analysis of Phenolic Compounds from Ceriops decandra Griff. Leaves and Molecular Interaction as Anti Diabetes, Science and Technology Indonesia, 8 (2023) 542–553.
  • [24] Z. Y. Ibrahim, A. Uzairu, G. A. Shallangwa, S. E. Abechi, Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), Futur J Pharm Sci, 7(2021).
  • [25] C. A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods, 44 (2000) 235–249.
  • [26] D. E. V. Pires, T. L. Blundell, D. B. Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J Med Chem, 58 (2015) 4066–4072.
  • [27] F. A. Ramadhani, M. F. Prastika, N. Fikriyah, Isnaeni, N. W. Diyah, Molecular Docking of Flavonoids from Extract of Roselle (Hibiscus sabdariffa L.) Calyx on PBP2a as the Basis for Antibacterial Activity Against Methicillin Resistant Staphylococcus aureus, Science and Technology Indonesia, 9 (2024) 487–493.
  • [28] D. A. E. Pitaloka, D. S. F. Ramadhan, Arfan, L. Chaidir, T. M. Fakih, Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (Inha) inhibitors of mycobacterium tuberculosis, Sci Pharm, 89 (2021).
  • [29] M. Rudrapal, M. P. K. Sowmya, Design, Synthesis, Drug-Likeness Studies and Bio-Evaluation of Some New Chalconeimines, Pharm Chem J, 53 (2019) 814–821.
  • [30] M. Rudrapal, D. Chetia, V. Singh, “Novel series of 1,2,4-trioxane derivatives as antimalarial agents, J Enzyme Inhib Med Chem, 32 (2017) 1159–1173.
There are 30 citations in total.

Details

Primary Language English
Subjects Chemical Thermodynamics and Energetics
Journal Section Research Article
Authors

Muhammad Aswad 0000-0002-7420-2401

Early Pub Date August 16, 2025
Publication Date October 28, 2025
Submission Date January 19, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2026 Volume: 10 Issue: 2

Cite

APA Aswad, M. (2025). Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors. Turkish Computational and Theoretical Chemistry, 10(2), 54-65.
AMA Aswad M. Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors. Turkish Comp Theo Chem (TC&TC). August 2025;10(2):54-65.
Chicago Aswad, Muhammad. “Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives As Plasmodial Falcipain-2 Inhibitors”. Turkish Computational and Theoretical Chemistry 10, no. 2 (August 2025): 54-65.
EndNote Aswad M (August 1, 2025) Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors. Turkish Computational and Theoretical Chemistry 10 2 54–65.
IEEE M. Aswad, “Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors”, Turkish Comp Theo Chem (TC&TC), vol. 10, no. 2, pp. 54–65, 2025.
ISNAD Aswad, Muhammad. “Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives As Plasmodial Falcipain-2 Inhibitors”. Turkish Computational and Theoretical Chemistry 10/2 (August2025), 54-65.
JAMA Aswad M. Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors. Turkish Comp Theo Chem (TC&TC). 2025;10:54–65.
MLA Aswad, Muhammad. “Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives As Plasmodial Falcipain-2 Inhibitors”. Turkish Computational and Theoretical Chemistry, vol. 10, no. 2, 2025, pp. 54-65.
Vancouver Aswad M. Molecular Docking, Dynamics Simulation and ADMET Prediction of Harmicine Derivatives as Plasmodial Falcipain-2 Inhibitors. Turkish Comp Theo Chem (TC&TC). 2025;10(2):54-65.

Journal Full Title: Turkish Computational and Theoretical Chemistry


Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)