BibTex RIS Cite

POLİPROPİLEN (PP) SPUNBOND DOKUNMAMIŞ KUMAŞLARIN ALANSAL AĞIRLIK, ÇEKME MUKAVEMETİ VE KOPMA UZAMASI ÖZELLİKLERİNİN GÖRÜNTÜ İŞLEME YÖNTEMİ KULLANILARAK HASARSIZ TESPİTİ

Year 2015, Volume: 25 Issue: 1, 24 - 32, 01.06.2015

Abstract

Görüntü İşleme Yöntemi, dokunmamış kumaşların boncuklaşma eğilimi ve dokuma ve örme kumaşlarda hasar tespiti gibi tekstil uygulamalarında yaygın olarak kullanılmaktadır. Görüntü işleme yöntemi ile kumaş ağırlığının tahmin edilmesi ile ilgili literatürde birçok çalışma bulunmaktadır. Fakat görüntü işleme yöntemi kullanılarak çekme mukavemeti ve kopma uzamasının kumaşlarda tahmini konusu çok az sayıda makalede işlenmiştir. Bu makalede, farklı ağırlıktaki polipropilen spunbond dokunmamış kumaşların (12g/m2, 20g/m2, 25g/m2, 30g/m2, 50g/m2) ağırlık, çekme mukavemeti ve kopma uzaması özelliklerinin görüntü işleme yöntemi ile tahmin edilmesi incelenmektedir. Deneysel sonuçlar ile makalede önerilen istatistiksel yöntemle tahmin edilen kumaş özellikleri karşılaştırılacaktır. Bu makalede incelenen bağıntılar yardımıyla, çekme mukavemeti cihazına sahip olmayan polipropilen spunbond dokunmamış kumaş üretim fabrikaları üretim sırasında kumaşların çekme mukavemetlerini ve kopma uzamalarını tahmin edebileceklerdir

References

  • 1. Pourmohammadi A. Nonwoven materials and joining techniques. In Jones I and Stylios GK (eds) Joining Textiles: Principles and Applications. 1st ed. Woodhead Publishing, 2013, pp. 565–581.
  • 2. Ajmeri JR and Ajmeri CJ. Nonwoven personal hygiene materials and products. In Chapman R (eds) Applications of Nonwovens in Technical Textiles. CRC Press, 2010, pp. 85-102.
  • 3. Jasinska I and Stempien Z. An alternative instrumental method for fabric pilling evaluation based on computer image analysis. Text Res J 2014; 484: 488.
  • 4. Konda A, Xin LC, Takadera M et al. Evaluation of pilling by computer image analysis. J Textile Mach Soc Japan 1990; 36(3): 96–107. 5. Hsi C, Bresee R and Annis P. Characterizing Fabric Pilling by Using Image-analysis Techniques. Part 1: Pill Detection and Description. J Text Inst 1998; 89(1): 80–95.
  • 6. Gloy YS, Gries T and Spies G. Non Destructive Testing of Fabric Weight in the Weaving Process. In 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), Le Mans, France, 20-24 May 2013.
  • 7. Kang TJ, Kim CH and Oh KW. Automatic Recognition of Fabric Weave Patterns by Digital Image Analysis. Text Res J 1999; 69(2): 77-83. 8. Turan RB, Okur A, Deveci Ret al. Predicting the intra-yarn porosity by image analysis method. Text Res J 2012; 82(16): 1720–1728.
  • 9. Jeong SH, Choi HT, Kim SR et al. Detecting fabric defects with computer vision and fuzzy rule generation part I: Defect classification by image processing, Text Res J 2001; 71(6): 518-526.
  • 10. Zhang XM, Wang RW, Wu HB and Xu B. Automated measurements of fiber diameters in melt-blown nonwovens. J Ind Text 2014; 43(4): 593-605.
  • 11. Wang R, Xu B and Li C. Accurate fiber orientation measurements in nonwovens using a multi-focus image fusion technique. Text Res J 2013; 84(2): 115– 124.
  • 12. Tunak M, Antoch J, Kula J et al. Estimation of fiber system orientation for nonwoven and nano fibrous layers: local approach based on image analysis. Text Res J 2013; online: 1-18.
  • 13. Pourdehyhimi B, Dent R, Jerbi A et al. Measuring Fiber Orientation in Nonwovens Part V: Real Webs. Text Res J 1999; 69(3): 185-192.
  • 14. Xu B. Measurement of Pore Characteristics in Nonwoven Fabrics Using Image Analysis. Cloth & Textiles Res J 1996; 14(1): 81-88.
  • 15. Aydilek AH, Oguz SH and Edil TB. Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. J Comput Civil Eng 2002; 16(4): 280-290.
  • 16. Lien HC and Liu CH. A method of inspecting non-woven basis weight using the exponential law of absorption and image processing. Text Res J 2006; 76: 547-558.
  • 17. Wang H, Jin X, Mao N et al. Differences in the tensile properties and failure mechanism of PP/PE Core/Sheath bicomponent and PP spunbond fabrics in uniaxial Conditions. Text Res J 2010; 80(17): 1759–1767.
  • 18. Rawal A, Lomov S, Ngo T et al. Mechanical Behavior of Thru-air Bonded Nonwoven Structures, Text Res J 2007; 77(6): 417-431.
  • 19. Kim HS, Deshpande A, Pourdeyhimi B et al. Characterizing structural changes in point-bonded nonwoven fabrics during load-deformation experiments, Text Res J 2001; 71(2): 164-173.
  • 20. Liao T and Adanur S. Computerized failure analysis of nonwoven fabrics based on fiber failure criterion. Text Res J 1999; 69(7): 489-495.
  • 21. Chhabra R. Nonwoven uniformity - Measurements using image analysis. Int Nonwovens J 2003; 12(1): 43-50.
  • 22. Militky J and Klicka V. Nonwovens uniformity spatial characterization. J Inf Comput Sci 2007; 2(2): 85-92.
  • 23. Ghassemieh E, Acar M and Versteeg H. Microstructural analysis of non-woven fabrics using scanning electron microscopy and image processing. Part 1: development and verification of the methods. Proc Instn Mech Engrs 2002; 216: 199-207

NONDESTRUCTIVE PREDICTION OF AREAL WEIGHT, GRAB TENSILE STRENGTH AND ELONGATION AT BREAK OF POLYPROPYLENE (PP) SPUNBOND NONWOVEN FABRICS USING DIGITAL IMAGE ANALYSIS

Year 2015, Volume: 25 Issue: 1, 24 - 32, 01.06.2015

Abstract

Digital image analysis is widely used in textile applications including fabric pilling behavior of nonwovens and defect detections in woven and knitted fabrics to predict some properties and online control of the quality of nonwoven materials. The estimation of fabric weight using digital image analysis is well established in the literature. But little information could be found about the estimation of grab tensile strength and elongation at break using digital image analysis. This paper investigates the estimation of weight, tensile strength and elongation at break values of polypropylene (PP) spunbond nonwoven fabrics at various weights (12g/m2, 20g/m2, 25g/m2, 30g/m2, 50g/m2) using digital image analysis. The relationships between the experimentally measured material properties and statistical parameters computed using digital image analysis is introduced. With the help of the correlations provided in this article, PP spunbond fabric production companies, which do not have tensile testing device, could roughly estimate the grab tensile strength and elongation at break values of the PP fabrics

References

  • 1. Pourmohammadi A. Nonwoven materials and joining techniques. In Jones I and Stylios GK (eds) Joining Textiles: Principles and Applications. 1st ed. Woodhead Publishing, 2013, pp. 565–581.
  • 2. Ajmeri JR and Ajmeri CJ. Nonwoven personal hygiene materials and products. In Chapman R (eds) Applications of Nonwovens in Technical Textiles. CRC Press, 2010, pp. 85-102.
  • 3. Jasinska I and Stempien Z. An alternative instrumental method for fabric pilling evaluation based on computer image analysis. Text Res J 2014; 484: 488.
  • 4. Konda A, Xin LC, Takadera M et al. Evaluation of pilling by computer image analysis. J Textile Mach Soc Japan 1990; 36(3): 96–107. 5. Hsi C, Bresee R and Annis P. Characterizing Fabric Pilling by Using Image-analysis Techniques. Part 1: Pill Detection and Description. J Text Inst 1998; 89(1): 80–95.
  • 6. Gloy YS, Gries T and Spies G. Non Destructive Testing of Fabric Weight in the Weaving Process. In 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), Le Mans, France, 20-24 May 2013.
  • 7. Kang TJ, Kim CH and Oh KW. Automatic Recognition of Fabric Weave Patterns by Digital Image Analysis. Text Res J 1999; 69(2): 77-83. 8. Turan RB, Okur A, Deveci Ret al. Predicting the intra-yarn porosity by image analysis method. Text Res J 2012; 82(16): 1720–1728.
  • 9. Jeong SH, Choi HT, Kim SR et al. Detecting fabric defects with computer vision and fuzzy rule generation part I: Defect classification by image processing, Text Res J 2001; 71(6): 518-526.
  • 10. Zhang XM, Wang RW, Wu HB and Xu B. Automated measurements of fiber diameters in melt-blown nonwovens. J Ind Text 2014; 43(4): 593-605.
  • 11. Wang R, Xu B and Li C. Accurate fiber orientation measurements in nonwovens using a multi-focus image fusion technique. Text Res J 2013; 84(2): 115– 124.
  • 12. Tunak M, Antoch J, Kula J et al. Estimation of fiber system orientation for nonwoven and nano fibrous layers: local approach based on image analysis. Text Res J 2013; online: 1-18.
  • 13. Pourdehyhimi B, Dent R, Jerbi A et al. Measuring Fiber Orientation in Nonwovens Part V: Real Webs. Text Res J 1999; 69(3): 185-192.
  • 14. Xu B. Measurement of Pore Characteristics in Nonwoven Fabrics Using Image Analysis. Cloth & Textiles Res J 1996; 14(1): 81-88.
  • 15. Aydilek AH, Oguz SH and Edil TB. Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. J Comput Civil Eng 2002; 16(4): 280-290.
  • 16. Lien HC and Liu CH. A method of inspecting non-woven basis weight using the exponential law of absorption and image processing. Text Res J 2006; 76: 547-558.
  • 17. Wang H, Jin X, Mao N et al. Differences in the tensile properties and failure mechanism of PP/PE Core/Sheath bicomponent and PP spunbond fabrics in uniaxial Conditions. Text Res J 2010; 80(17): 1759–1767.
  • 18. Rawal A, Lomov S, Ngo T et al. Mechanical Behavior of Thru-air Bonded Nonwoven Structures, Text Res J 2007; 77(6): 417-431.
  • 19. Kim HS, Deshpande A, Pourdeyhimi B et al. Characterizing structural changes in point-bonded nonwoven fabrics during load-deformation experiments, Text Res J 2001; 71(2): 164-173.
  • 20. Liao T and Adanur S. Computerized failure analysis of nonwoven fabrics based on fiber failure criterion. Text Res J 1999; 69(7): 489-495.
  • 21. Chhabra R. Nonwoven uniformity - Measurements using image analysis. Int Nonwovens J 2003; 12(1): 43-50.
  • 22. Militky J and Klicka V. Nonwovens uniformity spatial characterization. J Inf Comput Sci 2007; 2(2): 85-92.
  • 23. Ghassemieh E, Acar M and Versteeg H. Microstructural analysis of non-woven fabrics using scanning electron microscopy and image processing. Part 1: development and verification of the methods. Proc Instn Mech Engrs 2002; 216: 199-207
There are 21 citations in total.

Details

Other ID JA89AK75VC
Journal Section Articles
Authors

Mevlüt Taşcan This is me

Serkan Nohut This is me

Publication Date June 1, 2015
Submission Date June 1, 2015
Published in Issue Year 2015 Volume: 25 Issue: 1

Cite

APA Taşcan, M., & Nohut, S. (2015). NONDESTRUCTIVE PREDICTION OF AREAL WEIGHT, GRAB TENSILE STRENGTH AND ELONGATION AT BREAK OF POLYPROPYLENE (PP) SPUNBOND NONWOVEN FABRICS USING DIGITAL IMAGE ANALYSIS. Textile and Apparel, 25(1), 24-32.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.