Research Article
BibTex RIS Cite

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF THE AIR PERMEABILITY OF SYSTEMS OF WOVEN MACROSTRUCTURES

Year 2016, Volume: 26 Issue: 4, 385 - 392, 30.12.2016

Abstract

The transfer of air through systems of two woven macrostructure is studied experimentally and numerically. The influence of the properties of the layers, the array of the layering and the angle between the layers are analyzed from the point of view of the air permeability of the system. Results from the 3D simulation of the air permeability in through-thickness direction of systems of two consecutive woven macrostructures are also presented. An approach, based on modelling of the woven macrostructure as a jet system, is used to numerically predict the air transfer. Control volume method, Reynolds Averaged Navier-Stokes equations and Fluent CFD software package are applied for the simulation. The numerical results are compared with the experiments and the verification shows that the method can be successfully applied for simulation of the air transfer through multilayer systems.

References

  • 1. Angelova, R.A., Stankov, P., Simova, I., and Aragon I., Three Dimensional Simulation ofAir Permeability of Single Layer Woven Structures, Cent. Eur. J. Eng. 1 (4), 430-435 (2011).
  • 2. Ogulata R. T. (2006). Air permeability of woven fabrics. J Textile Apparel, Technology and Management. 5 (2), 1-10.
  • 3. Angelova R. A., P. Stankov, I. Simova, and M. Kyosov (2013). Computational Modeling and Experimental Validation of the Air Permeability of Woven Structures on the Basis of Simulation of Jet Systems. Text. Res. J. 83 (18), 1887-1895.
  • 4. Peirce F. T. and F. T. Womersley (1978). Cloth Geometry. Manchester, England: Text. Institute.
  • 5. Seyam A. and A. El-Shiekh (1993). Mechanics of Woven Fabrics. Text. Res. J. 63 (2), 371-378.
  • 6. Dubrovski P. D. and M. Brezocnik (2002). Using Genetic Programming to Predict the Macroporosity of Woven Cotton Fabrics. Text. Res. J. 72 (3), 187-194.
  • 7. Jakšic D. and N. Jakšic (2007). Assessment of Porosity of Flat Textile Fabrics. Text. Res. J. 77 (2), 105-110.
  • 8. Zupin Z., A. Hladnik and К. Dimitrovski (2012). Prediction of One-Layer Woven Fabrics Air Permeability Using Porosity Parameters. Text. Res. J. 82 (1),117-128.
  • 9. Fatahi, II., and Alamdar, Y. А., “Assessment of the Relationship between Air Permeability of Woven Fabrics and Its Mechanical Properties”, Fib Text East Europe. 18 (6), 68-71, (2010).
  • 10. Havlova, M., “Influence of Vertical Porosity on Woven Fabric Air Permeability”, 7th International Conference - TEXSCI 2010, Liberec, Czech Republic, (2010).
  • 11. Nabovati A., E. W. Llewellin and A. C. M. Sousa (2010). Through-thickness permeability prediction of 3D multifilament woven fabrics, Composites. Part A 41,453-463.
  • 12. Rief S., E. Glatt, E. Laourine, et al. (2011). Modelling and CFD-Simulation of Woven Textiles to Determine Permeability and Retention Properties. AUTEX Res J. 11, 78-83.
  • 13. Banks-Lee, P., Mohammadi, M., and Ghadimi, P., “Utilization of Air Permeability in Predicting the Thermal Conductivity”, Int. Nonwovens J. 13(2), 28-33 (2004).
  • 14. Gooijer H., M. M. C. G. Warmoeskerken. and J. Groot Wassink (2003a). Flow Resistance of Textile Materials Part I: Monofilament Fabrics. Text. Res. J. 73(5), 437-443.
  • 15. Gooijer H., M. M. C. G. Warmoeskerken. and J. Groot Wassink (2003b). Flow Resistance of Textile Materials Part II: Multifilament Fabrics. Text. Res. J. 73(6), 480-484.
  • 16. Belov E. B., S. V. Lomov, I. Verpoest, T. Peters, D. Roose, R. S. Parnas, K. Hoes and H. Sol (2004). Modelling of permeability of textile reinforcements: lattice Boltzmann method, Compos Sci and Tech. 64 (7–8), 1069-1080.
  • 17. Verleye B., M. Klitz, R. Groce, D. Roose, S. V. Lomov and I. Verpoest (2007). Computation of the permeability of textiles with experimental validation for monofilament and non crimp fabrics. Studies in Computational Intelligence, Springer.
  • 18. Wang Q., B. Maze, H. V. Tafreshi (2007). On the pressure drop modeling of monofilament-woven fabrics. Chemical Eng. Science. 62 (17), 4817-4821.
  • 19. Grouve, W. J. B., Akkerman, R., Loendersloot, R., and van den Berg, S. (2008), “Transverse permeability of woven fabrics”, 11th ESAFORM Conference on Material Forming, April 23-25, Lyon, France, (2008).
  • 20. Matusiak M. (2015) Application of Artificial Neural Networks to Predict the Air Permeability of Woven Fabrics. Fibers & Text. in Eastern Europe. 23 (1), 41-48.
  • 21. Unal P., M. Üreyen, and D. Mecit (2012), Predicting Properties of Single Jersey Fabrics using Regression and ANN Models, Fibers and Polymers. 13 (1), 87-95.
  • 22. Afzal A., T. Hussain, M. Malik, A. Rasheed, S Ahmad, A. Basit and A. Nazir (2014). Investigation and Modeling of Air Permeability of Cotton/Polyester Blended Double Layer Interlock Knitted Fabrics. Fibers and Polymers. 15 (7), 1539-1547.
  • 23. Xiao X., A. Long and X. Zeng (2014). Through-thickness permeability modelling of woven fabric under out-of-plane deformation. J Mater Sci. 49 7563-7574.
  • 24. Angelova R. A. (2016). Textiles and Human Thermophysiological Comfort in the Indoor Environment. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
  • 25. ISO 3801:2011, Textiles -– Woven fabrics -– Determination of mass per unit length and area, IOS, Switzerland.
  • 26. EN ISO 5084:201302. Textiles -– Determination of thickness of textiles and textile products. IOS, Switzerland.
  • 27. ISO 7211-2:20101984, Textiles -– Woven fabrics -– Construction - Methods of analysis - Part 2, IOS, Switzerland.
  • 28. Angelova R. A. (2012). Determination of the Pore Size of Woven Structures through Image Analysis, Cent. Eur. J. Eng. 2 (1), 129-135.
  • 29. Mezarcioz S., S. Mezarcioz, R.T. Ogulata, Prediction of the Air Permeability of Knitted Fabrics by Means of Computational Fluid Dynamics, Tekstil ve KonfeksiyonEKSTİL ve KONFEKSİYON 24(2), pp. 202-211, 2014.
  • 30. EN ISO 9237:20111999. Textiles-Determination of permeability of fabrics to air, IOS, Switzerland.
Year 2016, Volume: 26 Issue: 4, 385 - 392, 30.12.2016

Abstract

References

  • 1. Angelova, R.A., Stankov, P., Simova, I., and Aragon I., Three Dimensional Simulation ofAir Permeability of Single Layer Woven Structures, Cent. Eur. J. Eng. 1 (4), 430-435 (2011).
  • 2. Ogulata R. T. (2006). Air permeability of woven fabrics. J Textile Apparel, Technology and Management. 5 (2), 1-10.
  • 3. Angelova R. A., P. Stankov, I. Simova, and M. Kyosov (2013). Computational Modeling and Experimental Validation of the Air Permeability of Woven Structures on the Basis of Simulation of Jet Systems. Text. Res. J. 83 (18), 1887-1895.
  • 4. Peirce F. T. and F. T. Womersley (1978). Cloth Geometry. Manchester, England: Text. Institute.
  • 5. Seyam A. and A. El-Shiekh (1993). Mechanics of Woven Fabrics. Text. Res. J. 63 (2), 371-378.
  • 6. Dubrovski P. D. and M. Brezocnik (2002). Using Genetic Programming to Predict the Macroporosity of Woven Cotton Fabrics. Text. Res. J. 72 (3), 187-194.
  • 7. Jakšic D. and N. Jakšic (2007). Assessment of Porosity of Flat Textile Fabrics. Text. Res. J. 77 (2), 105-110.
  • 8. Zupin Z., A. Hladnik and К. Dimitrovski (2012). Prediction of One-Layer Woven Fabrics Air Permeability Using Porosity Parameters. Text. Res. J. 82 (1),117-128.
  • 9. Fatahi, II., and Alamdar, Y. А., “Assessment of the Relationship between Air Permeability of Woven Fabrics and Its Mechanical Properties”, Fib Text East Europe. 18 (6), 68-71, (2010).
  • 10. Havlova, M., “Influence of Vertical Porosity on Woven Fabric Air Permeability”, 7th International Conference - TEXSCI 2010, Liberec, Czech Republic, (2010).
  • 11. Nabovati A., E. W. Llewellin and A. C. M. Sousa (2010). Through-thickness permeability prediction of 3D multifilament woven fabrics, Composites. Part A 41,453-463.
  • 12. Rief S., E. Glatt, E. Laourine, et al. (2011). Modelling and CFD-Simulation of Woven Textiles to Determine Permeability and Retention Properties. AUTEX Res J. 11, 78-83.
  • 13. Banks-Lee, P., Mohammadi, M., and Ghadimi, P., “Utilization of Air Permeability in Predicting the Thermal Conductivity”, Int. Nonwovens J. 13(2), 28-33 (2004).
  • 14. Gooijer H., M. M. C. G. Warmoeskerken. and J. Groot Wassink (2003a). Flow Resistance of Textile Materials Part I: Monofilament Fabrics. Text. Res. J. 73(5), 437-443.
  • 15. Gooijer H., M. M. C. G. Warmoeskerken. and J. Groot Wassink (2003b). Flow Resistance of Textile Materials Part II: Multifilament Fabrics. Text. Res. J. 73(6), 480-484.
  • 16. Belov E. B., S. V. Lomov, I. Verpoest, T. Peters, D. Roose, R. S. Parnas, K. Hoes and H. Sol (2004). Modelling of permeability of textile reinforcements: lattice Boltzmann method, Compos Sci and Tech. 64 (7–8), 1069-1080.
  • 17. Verleye B., M. Klitz, R. Groce, D. Roose, S. V. Lomov and I. Verpoest (2007). Computation of the permeability of textiles with experimental validation for monofilament and non crimp fabrics. Studies in Computational Intelligence, Springer.
  • 18. Wang Q., B. Maze, H. V. Tafreshi (2007). On the pressure drop modeling of monofilament-woven fabrics. Chemical Eng. Science. 62 (17), 4817-4821.
  • 19. Grouve, W. J. B., Akkerman, R., Loendersloot, R., and van den Berg, S. (2008), “Transverse permeability of woven fabrics”, 11th ESAFORM Conference on Material Forming, April 23-25, Lyon, France, (2008).
  • 20. Matusiak M. (2015) Application of Artificial Neural Networks to Predict the Air Permeability of Woven Fabrics. Fibers & Text. in Eastern Europe. 23 (1), 41-48.
  • 21. Unal P., M. Üreyen, and D. Mecit (2012), Predicting Properties of Single Jersey Fabrics using Regression and ANN Models, Fibers and Polymers. 13 (1), 87-95.
  • 22. Afzal A., T. Hussain, M. Malik, A. Rasheed, S Ahmad, A. Basit and A. Nazir (2014). Investigation and Modeling of Air Permeability of Cotton/Polyester Blended Double Layer Interlock Knitted Fabrics. Fibers and Polymers. 15 (7), 1539-1547.
  • 23. Xiao X., A. Long and X. Zeng (2014). Through-thickness permeability modelling of woven fabric under out-of-plane deformation. J Mater Sci. 49 7563-7574.
  • 24. Angelova R. A. (2016). Textiles and Human Thermophysiological Comfort in the Indoor Environment. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
  • 25. ISO 3801:2011, Textiles -– Woven fabrics -– Determination of mass per unit length and area, IOS, Switzerland.
  • 26. EN ISO 5084:201302. Textiles -– Determination of thickness of textiles and textile products. IOS, Switzerland.
  • 27. ISO 7211-2:20101984, Textiles -– Woven fabrics -– Construction - Methods of analysis - Part 2, IOS, Switzerland.
  • 28. Angelova R. A. (2012). Determination of the Pore Size of Woven Structures through Image Analysis, Cent. Eur. J. Eng. 2 (1), 129-135.
  • 29. Mezarcioz S., S. Mezarcioz, R.T. Ogulata, Prediction of the Air Permeability of Knitted Fabrics by Means of Computational Fluid Dynamics, Tekstil ve KonfeksiyonEKSTİL ve KONFEKSİYON 24(2), pp. 202-211, 2014.
  • 30. EN ISO 9237:20111999. Textiles-Determination of permeability of fabrics to air, IOS, Switzerland.
There are 30 citations in total.

Details

Journal Section Articles
Authors

R. A. Angelova This is me

E. Georgıeva This is me

M. Kyosov This is me

P. Stankov This is me

Publication Date December 30, 2016
Submission Date January 6, 2017
Acceptance Date October 19, 2016
Published in Issue Year 2016 Volume: 26 Issue: 4

Cite

APA Angelova, R. A., Georgıeva, E., Kyosov, M., Stankov, P. (2016). EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF THE AIR PERMEABILITY OF SYSTEMS OF WOVEN MACROSTRUCTURES. Textile and Apparel, 26(4), 385-392.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.