Research Article
BibTex RIS Cite

MACBETH BASED TAGUCHI LOSS FUNCTIONS APPROACH FOR GREEN SUPPLIER SELECTION: A CASE STUDY IN TEXTILE INDUSTRY

Year 2018, Volume: 28 Issue: 2, 90 - 97, 30.06.2018

Abstract

Due to the increasing concern towards environmental protection, companies have started to adapt environmentalist approaches with the aim of being perceived as green. However, this might not be enough in performing in a supply chain thus working with green partners is mandatory. Since suppliers have important effects on the performance of supply chains, it becomes more important to evaluate potential suppliers by considering environmental factors. This study proposes a novel integrated approach consisting of MACBETH and Taguchi loss functions for green supplier selection problem. The proposed approach determines the weights of criteria by using MACBETH in the first stage. These weights are used in Taguchi loss functions for ranking and selecting the best suppliers. A real case study from textile industry is presented to illustrate the applicability of the proposed methodology. Moreover, the impacts of the changes on criteria weights have been investigated through sensitivity analysis.

References

  • 1. Srivastava S.K., 2007, “Green supply-chain management: A state-of-the-art literature review”, International Journal of Management Reviews, 9(1): 53-80.
  • 2. Ho W., Xu X. and Dey P.K., 2010, “Multi-criteria decision making approaches for supplier evaluation and selection: a literature review”, European Journal of Operational Research, 202(1): 16-24.
  • 3. Govindan K., Sivakumar R., Sarkis J. and Murugesan P., 2015, “Multi criteria decision making approaches for green supplier evaluation and selection: a literature review”, Journal of Cleaner Production, 98: 66-83.
  • 4. Azadnia A.H., Saman M.Z.M. and Wong K.Y., 2015, “Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process”, International Journal of Production Research, 53(2): 383-408.
  • 5. Chen C.C., Tseng M.L., Lin Y.H. and Lin Z.S., 2010, “Implementation of green supply chain management in uncertainty” In: IEEE International Conference on IEEM, Dec. 7-10, pp. 260-264.
  • 6. Kannan D., Khodaverdi R., Olfat L., Jafarian A. and Diabat A., 2013, “Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain”, Journal of Cleaner Production, 47: 355-367.
  • 7. Kuo R.J., Wang Y.C. and Tien F.C., 2010, “Integration of artificial neural network and MADA methods for green supplier selection”, Journal of Cleaner Production, 18(12): 1161-1170.
  • 8. Li X. and Zhao C., 2009, “Selection of suppliers of vehicle components based on green supply chain”, In: IEEE International Conference on IE&EM, 21-23-Oct, pp. 1588-1591.
  • 9. Luthra S., Govindan K., Kannan D., Mangla S.K. and Garg C.P., 2016, “An integrated framework for sustainable supplier selection and evaluation in supply chains”, Journal of Cleaner Production, 140(3): 1686-1698.
  • 10. Thongchattu C and Siripokapirom S (2010). Green supplier selection consensus by neural network. In: International Conference on ICMEE, IEEE 1-3 Aug,pp. 313-316.
  • 11. Wen U.P. and Chi J.M., 2010, “Developing green supplier selection procedure: a DEA approach”, In: IEEE International Conference on IE&EM, 29-31 Oct, 79-74.
  • 12. Yan G., 2009, “Research on green suppliers’ evaluation based on AHP & genetic algorithm”, In: IEEE International Conference on SPS, 15-17 May, pp. 615-619
  • 13. Yazdani M., Zolfani S.H. and Zavadskas E.K., 2016, “New integration of MCDM methods and QFD in the selection of green suppliers”, Journal of Business Economics and Management, 17(6): 1097-1113.
  • 14. Karande P. and Chakraborty S., 2013, “Using MACBETH method for supplier selection in manufacturing environment”, International Journal of IndustrialEngineering Computations, 4(2): 259-279.
  • 15. Dhouib D., 2014, “An extension of MACBETH method for a fuzzy environment to analyze alternatives in reverse logistics for automobile tire wastes”,Omega, 42(1): 25–32.
  • 16. Rodrigues T.C., 2014, “The MACBETH Approach to Health Value Measurement: Building a Population Health Index in Group Processes”, ProcediaTechnology, 16: 1361–1366.
  • 17. Lavoie R., Deslandes J. and Proulx F., 2016, “Assessing the ecological value of wetlands using the MACBETH approach in Quebec City”, Journal for Nature Conservation, 30: 67-75.
  • 18. Ishizaka A. and Gordon M., 2017, “MACBETHSort: a multiple criteria decision aid procedure for sorting strategic products”, Journal of the OperationalResearch Society, 68: 53–61.
  • 19. Taguchi G., 1986, “Introduction to quality engineering: designing quality into products and processes”, Asian productivity organization: Tokyo.
  • 20. Azizi A., Yarmohammadi Y. and Yasini A., 2015, “Superior Supplier Selection - A Joint Approach of Taguchi, AHP, and Fuzzy Multi- Objective Programming”, Australian Journal of Basic and Applied Sciences, 9(2): 163–170.
  • 21. Festervand T.A., Kethley R.B. and Waller B.D., 2001, “The marketing of industrial real estate: application of Taguchi loss functions”, Journal of Multi- Criteria Decision Analysis, 10(4): 219–228.
  • 22. Liao C.N. and Kao H.P., 2010, “Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming”,Computers & Industrial Engineering, 58(4): 571–577.
  • 23. Ordoobadi S., 2009, “Application of Taguchi loss functions for supplier selection”, Supply Chain Management: An International Journal, 14(1): 22–30.
  • 24. Pi W.N. and Low C., 2006, “Supplier evaluation and selection via Taguchi loss functions and an AHP” International Journal of Advanced Manufacturing Technology, 27(5–6): 625–630.
  • 25. Sivakumar R., Kannan D. and Murugesan P., 2015, “Green vendor evaluation and selection using AHP and Taguchi loss functions in production outsourcing in mining industry”, Resources Policy, 46: 64–75.
  • 26. Akman G., 2015, “Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods”, Computers andIndustrial Engineering, 86: 69–82.
  • 27. Ertay T., Kahraman C. and Kaya I., 2013, “Evaluation of renewable energy alternatives using MACBETH and fuzzy AHP multicriteria methods: the case of Turkey”, Technological and Economic Development of Economy, 19(1): 38–62.
  • 28. Lee A.H.I., Kang H.Y., Hsu C.F. and Hung H.C., 2009, “A green supplier selection model for high-tech industry”, Expert Systems with Applications, 36: 7917-7927
  • 29. Lu L.Y.Y., Wu C.H. and Kuo T.C., 2007, “Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis”,International Journal of Production Research, 45(18-19): 4317-4331.
  • 30. Bakeshlou E.A., Khamseh A.A., Asl M.A.G., Sadeghi J. and Abbaszadeh M., 2017, “Evaluating a green supplier selection problem using a hybrid MODMalgorithm”, Journal of Intelligent Manufacturing, 28(4): 913-927.
  • 31. Büyüközkan G. and Çifçi G., 2012, “A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers”, Expert Systems with Applications, 39(3): 3000–3011.
  • 32. Hashemi S.H., Karimi A. and Tavana M., 2015, “An integrated green supplier selection approach with analytic network process and improved Grey relational analysis”, International Journal of Production Economics, 159: 178–191.
  • 33. Hsu C.W. and Hu A.H., 2009, “Applying hazardous substance management to supplier selection using analytic network process”, Journal of CleanerProduction, 17: 255-264.
  • 34. Kuo T.C., Hsu C.W. and Li J.Y., 2015, “Developing a green supplier selection model by using the DANP with VIKOR”, Sustainability, 7(2): 1661–1689.
  • 35. Tuzkaya G., Özgen A., Özgen D. and Tuzkaya U.R., 2009, “Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach”, International Journal of Environmental Science and Technology, 6(3): 477-490.
  • 36. Awasthi A. and Kannan G., 2016, “Green supplier development program selection using NGT and VIKOR under fuzzy environment”, Computers and Industrial Engineering, 91: 100–108.
  • 37. Banaeian N., Mobli H., Fahimnia B., Nielsen I.E. and Omid M., 2016, “Green Supplier Selection Using Fuzzy Group Decision Making Methods: A Case Study from the Agri-Food Industry”, Computers & Operations Research online publication 4 March. http://doi.org/10.1016/j.cor.2016.02.015
  • 38. Rostamzadeh R., Govindan K., Esmaeili A. and Sabaghi M., 2015, “Application of fuzzy VIKOR for evaluation of green supply chain management practices”, Ecological Indicators, 49: 188–203.
  • 39. Awasthi A., Chauhan S.S. and Goyal S.K., 2010, “A fuzzy multicriteria approach for evaluating environmental performance of suppliers”, International Journal of Production Economics, 126: 370-378.
  • 40. Shen L., Olfat L., Govindan K., Khodaverdi R. and Diabat A., 2013, “A fuzzy multi criteria approach for evaluating green supplier’s performance in greensupply chain with linguistic preferences”, Resources, Conservation and Recycling, 74: 170–179.
  • 41. Yang Y. and Wu L., 2007, “Grey entropy method for green supplier selection”, In: IEEE International Conference on WiCom, 21-25 Sept, pp. 4682-4685.
  • 42. Bala A., Paco Muñoz P., Rieradevall J. and Ysern P., 2008, “Experiences with greening suppliers. The Universitat Autònoma de Barcelona”, Journal of Cleaner Production, 16(15): 1610-1619.
  • 43. Hong-Jun L. and Bin L., 2010, “A research on supplier assessment indices system of green purchasing”, In: IEEE International Conference on ICEE, 13- 14 March, pp. 314-317.
  • 44. Feyzioglu O. and Büyüközkan G., 2010, “Evaluation of green suppliers considering decision criteria dependencies”, In Ehrgott M, Naujoks B, Stewart TJ and Wallenius J (eds). Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Springer-Verlag: Berlin, pp. 145-154.
  • 45. Chiou T.Y., Chan H.K., Lettice F. and Chung S.H., 2011, “The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan”, Transportation Research Part E Logistics and Transportation Review, 47(6): 822-836.
  • 46. Yeh W.C. and Chuang M.C., 2011, “Using multi-objective genetic algorithm for partner selection in green supply chain problems”, Expert Systems with Applications, 38: 4244-4253.
  • 47. Zhao H. and Guo S., 2014, “Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability”, Sustainability, 6: 217-235.
  • 48. Dobos I. and Vörösmarty G., 2014, “Green supplier selection and evaluation using DEA-type composite indicators”, International Journal of Production Economics, 157(1): 273–278.
  • 49. Kannan D, De Sousa Jabbour ABL and Jabbour CJC (2014). Selecting green suppliers based on GSCM practices: Using Fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research 233(2): 432–447.
  • 50. Kannan D., Govindan K. and Rajendran S., 2015, “Fuzzy axiomatic design approach based green supplier selection: A case study from Singapore”, Journal of Cleaner Production, 96: 194–208.
  • 51. Keshavarz Ghorabaee M., Zavadskas E.K., Amiri M. and Esmaeili A., 2016, “Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets”, Journal of Cleaner Production, 137: 213–229.
  • 52. Rezaei J., Nispeling T., Sarkis J. and Tavasszy L., 2016, “A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method”, Journal of Cleaner Production, 135: 577–588.
  • 53. Bana e Costa C.A. and Vansnick J.C., 1997, “Applications of the MACBETH approach in the framework of an additive aggregation model”, Journal of Multi-criteria Decision Analysis, 6(2): 107-114.
  • 54. Burgazoğlu H., 2015, “MACBETH”, In Yıldırım BF and Önder E (eds). Çok kriterli karar verme yöntemleri. Dora Yayıncılık: Ankara, pp. 259-278.
  • 55. Clivillé V., Berrah L. and Mauris G., 2007, “Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method”, International Journal of Production Economics, 105(1): 171–189.
  • 56. Bana e Costa C.A., De Corte J.M. and Vansnick J.C., 2005, “M-MACBETH User’s Guide (Version 2.4.0)”, http://www.m-macbeth.com/help/pdf/MMACBETH 2.4.0 Users Guide.pdf, accessed 26 December 2016.
  • 57. Gören Güner H., 2018, “A decision framework for sustainable supplier selection and order allocation with lost sales”, Journal of Cleaner Production, 183: 1156-1169.

YEŞİL TEDARİKÇİ SEÇİMİ İÇİN MACBETH TABANLI TAGUCHİ KAYIP FONKSİYONLARI YAKLAŞIMI: TEKSTİL ENDÜSTRİSİNDE BİR UYGULAMA

Year 2018, Volume: 28 Issue: 2, 90 - 97, 30.06.2018

Abstract

Çevreyi koruma bilincinin artması sebebiyle, firmalar yeşil olarak algılanmak amacıyla çevreci yaklaşımları benimsemeye başlamışlardır. Bunun yanı sıra tedarik zincirinde bu yaklaşım yeterli olmayabilir ve yeşil tedarikçilerle işbirliği yapmak zorunlu hale gelebilir. Tedarikçiler, tedarik zincirlerinin performansı üzerinde önemli etkiye sahip olduklarından, çevresel faktörleri göz önüne alarak potansiyel tedarikçilerin değerlendirilmesi daha da önem kazanmaktadır. Bu çalışma, yeşil tedarikçi seçimi problemi için MACBETH ve Taguchi kayıp fonksiyonlarından oluşan yeni bütünleşik bir yaklaşım önermektedir. Önerilen yaklaşımın ilk aşamasında kriterlerin ağırlıkları MACBETH yöntemiyle belirlenmektedir. Bu ağırlık değerleri, Taguchi kayıp fonksiyonlarında en iyi tedarikçilerin sıralanması ve seçiminde kullanılmaktadır. Önerilen yöntemin uygulanabilirliği tekstil endüstrisinde bir vaka çalışması ile sunulmuştur. Ayrıca kriter ağırlıklarındaki değişimlerin yarattığı etki duyarlılık analizi ile araştırılmıştır.

References

  • 1. Srivastava S.K., 2007, “Green supply-chain management: A state-of-the-art literature review”, International Journal of Management Reviews, 9(1): 53-80.
  • 2. Ho W., Xu X. and Dey P.K., 2010, “Multi-criteria decision making approaches for supplier evaluation and selection: a literature review”, European Journal of Operational Research, 202(1): 16-24.
  • 3. Govindan K., Sivakumar R., Sarkis J. and Murugesan P., 2015, “Multi criteria decision making approaches for green supplier evaluation and selection: a literature review”, Journal of Cleaner Production, 98: 66-83.
  • 4. Azadnia A.H., Saman M.Z.M. and Wong K.Y., 2015, “Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process”, International Journal of Production Research, 53(2): 383-408.
  • 5. Chen C.C., Tseng M.L., Lin Y.H. and Lin Z.S., 2010, “Implementation of green supply chain management in uncertainty” In: IEEE International Conference on IEEM, Dec. 7-10, pp. 260-264.
  • 6. Kannan D., Khodaverdi R., Olfat L., Jafarian A. and Diabat A., 2013, “Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain”, Journal of Cleaner Production, 47: 355-367.
  • 7. Kuo R.J., Wang Y.C. and Tien F.C., 2010, “Integration of artificial neural network and MADA methods for green supplier selection”, Journal of Cleaner Production, 18(12): 1161-1170.
  • 8. Li X. and Zhao C., 2009, “Selection of suppliers of vehicle components based on green supply chain”, In: IEEE International Conference on IE&EM, 21-23-Oct, pp. 1588-1591.
  • 9. Luthra S., Govindan K., Kannan D., Mangla S.K. and Garg C.P., 2016, “An integrated framework for sustainable supplier selection and evaluation in supply chains”, Journal of Cleaner Production, 140(3): 1686-1698.
  • 10. Thongchattu C and Siripokapirom S (2010). Green supplier selection consensus by neural network. In: International Conference on ICMEE, IEEE 1-3 Aug,pp. 313-316.
  • 11. Wen U.P. and Chi J.M., 2010, “Developing green supplier selection procedure: a DEA approach”, In: IEEE International Conference on IE&EM, 29-31 Oct, 79-74.
  • 12. Yan G., 2009, “Research on green suppliers’ evaluation based on AHP & genetic algorithm”, In: IEEE International Conference on SPS, 15-17 May, pp. 615-619
  • 13. Yazdani M., Zolfani S.H. and Zavadskas E.K., 2016, “New integration of MCDM methods and QFD in the selection of green suppliers”, Journal of Business Economics and Management, 17(6): 1097-1113.
  • 14. Karande P. and Chakraborty S., 2013, “Using MACBETH method for supplier selection in manufacturing environment”, International Journal of IndustrialEngineering Computations, 4(2): 259-279.
  • 15. Dhouib D., 2014, “An extension of MACBETH method for a fuzzy environment to analyze alternatives in reverse logistics for automobile tire wastes”,Omega, 42(1): 25–32.
  • 16. Rodrigues T.C., 2014, “The MACBETH Approach to Health Value Measurement: Building a Population Health Index in Group Processes”, ProcediaTechnology, 16: 1361–1366.
  • 17. Lavoie R., Deslandes J. and Proulx F., 2016, “Assessing the ecological value of wetlands using the MACBETH approach in Quebec City”, Journal for Nature Conservation, 30: 67-75.
  • 18. Ishizaka A. and Gordon M., 2017, “MACBETHSort: a multiple criteria decision aid procedure for sorting strategic products”, Journal of the OperationalResearch Society, 68: 53–61.
  • 19. Taguchi G., 1986, “Introduction to quality engineering: designing quality into products and processes”, Asian productivity organization: Tokyo.
  • 20. Azizi A., Yarmohammadi Y. and Yasini A., 2015, “Superior Supplier Selection - A Joint Approach of Taguchi, AHP, and Fuzzy Multi- Objective Programming”, Australian Journal of Basic and Applied Sciences, 9(2): 163–170.
  • 21. Festervand T.A., Kethley R.B. and Waller B.D., 2001, “The marketing of industrial real estate: application of Taguchi loss functions”, Journal of Multi- Criteria Decision Analysis, 10(4): 219–228.
  • 22. Liao C.N. and Kao H.P., 2010, “Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming”,Computers & Industrial Engineering, 58(4): 571–577.
  • 23. Ordoobadi S., 2009, “Application of Taguchi loss functions for supplier selection”, Supply Chain Management: An International Journal, 14(1): 22–30.
  • 24. Pi W.N. and Low C., 2006, “Supplier evaluation and selection via Taguchi loss functions and an AHP” International Journal of Advanced Manufacturing Technology, 27(5–6): 625–630.
  • 25. Sivakumar R., Kannan D. and Murugesan P., 2015, “Green vendor evaluation and selection using AHP and Taguchi loss functions in production outsourcing in mining industry”, Resources Policy, 46: 64–75.
  • 26. Akman G., 2015, “Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods”, Computers andIndustrial Engineering, 86: 69–82.
  • 27. Ertay T., Kahraman C. and Kaya I., 2013, “Evaluation of renewable energy alternatives using MACBETH and fuzzy AHP multicriteria methods: the case of Turkey”, Technological and Economic Development of Economy, 19(1): 38–62.
  • 28. Lee A.H.I., Kang H.Y., Hsu C.F. and Hung H.C., 2009, “A green supplier selection model for high-tech industry”, Expert Systems with Applications, 36: 7917-7927
  • 29. Lu L.Y.Y., Wu C.H. and Kuo T.C., 2007, “Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis”,International Journal of Production Research, 45(18-19): 4317-4331.
  • 30. Bakeshlou E.A., Khamseh A.A., Asl M.A.G., Sadeghi J. and Abbaszadeh M., 2017, “Evaluating a green supplier selection problem using a hybrid MODMalgorithm”, Journal of Intelligent Manufacturing, 28(4): 913-927.
  • 31. Büyüközkan G. and Çifçi G., 2012, “A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers”, Expert Systems with Applications, 39(3): 3000–3011.
  • 32. Hashemi S.H., Karimi A. and Tavana M., 2015, “An integrated green supplier selection approach with analytic network process and improved Grey relational analysis”, International Journal of Production Economics, 159: 178–191.
  • 33. Hsu C.W. and Hu A.H., 2009, “Applying hazardous substance management to supplier selection using analytic network process”, Journal of CleanerProduction, 17: 255-264.
  • 34. Kuo T.C., Hsu C.W. and Li J.Y., 2015, “Developing a green supplier selection model by using the DANP with VIKOR”, Sustainability, 7(2): 1661–1689.
  • 35. Tuzkaya G., Özgen A., Özgen D. and Tuzkaya U.R., 2009, “Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach”, International Journal of Environmental Science and Technology, 6(3): 477-490.
  • 36. Awasthi A. and Kannan G., 2016, “Green supplier development program selection using NGT and VIKOR under fuzzy environment”, Computers and Industrial Engineering, 91: 100–108.
  • 37. Banaeian N., Mobli H., Fahimnia B., Nielsen I.E. and Omid M., 2016, “Green Supplier Selection Using Fuzzy Group Decision Making Methods: A Case Study from the Agri-Food Industry”, Computers & Operations Research online publication 4 March. http://doi.org/10.1016/j.cor.2016.02.015
  • 38. Rostamzadeh R., Govindan K., Esmaeili A. and Sabaghi M., 2015, “Application of fuzzy VIKOR for evaluation of green supply chain management practices”, Ecological Indicators, 49: 188–203.
  • 39. Awasthi A., Chauhan S.S. and Goyal S.K., 2010, “A fuzzy multicriteria approach for evaluating environmental performance of suppliers”, International Journal of Production Economics, 126: 370-378.
  • 40. Shen L., Olfat L., Govindan K., Khodaverdi R. and Diabat A., 2013, “A fuzzy multi criteria approach for evaluating green supplier’s performance in greensupply chain with linguistic preferences”, Resources, Conservation and Recycling, 74: 170–179.
  • 41. Yang Y. and Wu L., 2007, “Grey entropy method for green supplier selection”, In: IEEE International Conference on WiCom, 21-25 Sept, pp. 4682-4685.
  • 42. Bala A., Paco Muñoz P., Rieradevall J. and Ysern P., 2008, “Experiences with greening suppliers. The Universitat Autònoma de Barcelona”, Journal of Cleaner Production, 16(15): 1610-1619.
  • 43. Hong-Jun L. and Bin L., 2010, “A research on supplier assessment indices system of green purchasing”, In: IEEE International Conference on ICEE, 13- 14 March, pp. 314-317.
  • 44. Feyzioglu O. and Büyüközkan G., 2010, “Evaluation of green suppliers considering decision criteria dependencies”, In Ehrgott M, Naujoks B, Stewart TJ and Wallenius J (eds). Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Springer-Verlag: Berlin, pp. 145-154.
  • 45. Chiou T.Y., Chan H.K., Lettice F. and Chung S.H., 2011, “The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan”, Transportation Research Part E Logistics and Transportation Review, 47(6): 822-836.
  • 46. Yeh W.C. and Chuang M.C., 2011, “Using multi-objective genetic algorithm for partner selection in green supply chain problems”, Expert Systems with Applications, 38: 4244-4253.
  • 47. Zhao H. and Guo S., 2014, “Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability”, Sustainability, 6: 217-235.
  • 48. Dobos I. and Vörösmarty G., 2014, “Green supplier selection and evaluation using DEA-type composite indicators”, International Journal of Production Economics, 157(1): 273–278.
  • 49. Kannan D, De Sousa Jabbour ABL and Jabbour CJC (2014). Selecting green suppliers based on GSCM practices: Using Fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research 233(2): 432–447.
  • 50. Kannan D., Govindan K. and Rajendran S., 2015, “Fuzzy axiomatic design approach based green supplier selection: A case study from Singapore”, Journal of Cleaner Production, 96: 194–208.
  • 51. Keshavarz Ghorabaee M., Zavadskas E.K., Amiri M. and Esmaeili A., 2016, “Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets”, Journal of Cleaner Production, 137: 213–229.
  • 52. Rezaei J., Nispeling T., Sarkis J. and Tavasszy L., 2016, “A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method”, Journal of Cleaner Production, 135: 577–588.
  • 53. Bana e Costa C.A. and Vansnick J.C., 1997, “Applications of the MACBETH approach in the framework of an additive aggregation model”, Journal of Multi-criteria Decision Analysis, 6(2): 107-114.
  • 54. Burgazoğlu H., 2015, “MACBETH”, In Yıldırım BF and Önder E (eds). Çok kriterli karar verme yöntemleri. Dora Yayıncılık: Ankara, pp. 259-278.
  • 55. Clivillé V., Berrah L. and Mauris G., 2007, “Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method”, International Journal of Production Economics, 105(1): 171–189.
  • 56. Bana e Costa C.A., De Corte J.M. and Vansnick J.C., 2005, “M-MACBETH User’s Guide (Version 2.4.0)”, http://www.m-macbeth.com/help/pdf/MMACBETH 2.4.0 Users Guide.pdf, accessed 26 December 2016.
  • 57. Gören Güner H., 2018, “A decision framework for sustainable supplier selection and order allocation with lost sales”, Journal of Cleaner Production, 183: 1156-1169.
There are 57 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hacer Güner Gören

Ahmet Alp Şenocak This is me

Publication Date June 30, 2018
Submission Date October 23, 2017
Acceptance Date May 11, 2018
Published in Issue Year 2018 Volume: 28 Issue: 2

Cite

APA Güner Gören, H., & Şenocak, A. A. (2018). MACBETH BASED TAGUCHI LOSS FUNCTIONS APPROACH FOR GREEN SUPPLIER SELECTION: A CASE STUDY IN TEXTILE INDUSTRY. Textile and Apparel, 28(2), 90-97.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.