Bacillus aryabhattai SMNCH17-07 Strain: First Isolation and Characterization from Textile Waste Water with Evaluation of Its Decolorization Ability against Azo Dyes
Year 2022,
Volume: 32 Issue: 2, 99 - 107, 30.06.2022
Safiye Elif Korcan
,
Kübra Çitekci
,
Büşra Aydın
,
Ahmed Badri Abed
,
Gülderen Uysal Akkuş
Abstract
Azo dyes are largely entered into various industrial products. Conventional treatment techniques are insufficient to eliminate azo dyes entirely from effluents due to the ability of these dyes to maintain color, steadiness and being difficult to transformation. Bioremediation procedures have -been proved as a promising method to remove azo dyes effectively, due to their advantages such as the low cost, being environmentally safe and the large scale usage capability.
In this study, SA3 bacterial isolate, has been collected from textile waste water area in industrial zone located in Usak province, Turkey. Phenotypic identification and phylogenetic determination on the basis of partial 16S rDNA sequence comparisons indicated that this strain is 100 % Bacillus aryabhattai SMNCH17-07 strain. SA3 isolate was Gram positive, central spore-forming and rod-shape bacteria .The isolate gave positive results for catalase, NaCl, Voges-Proskauer, starch hydrolysis assays and negative results for the citrate reaction.
The decolorizing ability of this strain was evaluated against CI Acid Blue 193 CI 15707 and CI Acid Red 88 CI 15620 dyes. The results showed that absorbance rate of Acid Blue by this isolate was (33, 17%) after 216 hours. While Absorbance rate of Acid red by this isolate was (62,68 %) after120 hours. According to FTIR spectrometer results of dyes adsorption it was found that bacterial retention sites were possibly aromatic and aliphatic (C = C, C = N, N = N) as well C‐O groups. As the first report on the isolation of Bacillus aryabhattai SMNCH17-07 strain from textile waste water with the evaluation of its ability to remove azo dyes, we suggest testing this bacterium as a low cost and ecofriendly bioremediator agent against further harmful dyes and pollutants.
Supporting Institution
yok
Thanks
Dear Editor,
I would like to submit the uploaded manuscript for publication in “Bacillus aryabhattai SMNCH17-07 Strain: First Isolation and Characterization from Textile Waste Water with Evaluation of Its Decolorization Ability against Azo Dyes” In this study, we report for the frst time; The decolorizing ability of this strain was evaluated against CI Acid Blue 193 CI 15707 and CI Acid Red 88 CI 15620 dyes. The results showed that absorbance rate of Acid Blue by this isolate was (33, 17%) after 216 hours. While Absorbance rate of Acid red by this isolate was (62,68 %) after120 hours. According to FTIR spectrometer results of dyes adsorption it was found that bacterial retention sites were possibly aromatic and aliphatic (C = C, C = N, N = N) as well C‐O groups.
As the first report on the isolation of Bacillus aryabhattai SMNCH17-07 strain from textile waste water with the evaluation of its ability to remove azo dyes, we suggest testing this bacterium as a low cost and ecofriendly bioremediator agent against further harmful dyes and pollutants.
I am happy with its contents, and it has neither been published nor submitted concurrently in elsewhere.
Please contact with me at the addresses above.
I look forward to hearing from you soon.
Yours,
Safiye Elif Korcan
elif.korcan@usak.edu.tr
0553 843 2025
Corresponding Author
References
- [1].Pandey A., Singh P., Iyengar L., 2007, “Bacterial decolorization and degradation of azo dyes”, International Biodeterioration & Biodegradation,Vol:59(2), pp:73-84.
- [2].Kant R., 2012, “Textile dyeing industry an environmental hazard”, Natural Science, Vol:04(01), pp:22-6.
- [3].Hossen M.Z., Hussain M.E., Hakim A., Islam K., Uddin M.N., Azad A.K., 2019, “Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents”, Heliyon, Vol:5(7), pp:02068.
- [4].Aksu Z., 2005 “Application of biosorption for the removal of organic pollutants”, Process Biochemistry, Vol:;40(3-4), pp:997-1026.
- [5].Dellamatrice P.M., Silva-Stenico M.E., Moraes L.A.B., Fiore M.F., Monteiro R.T.R., 2017, “Degradation of textile dyes by cyanobacteria”, Brazilian Journal of Microbiology, Vol:48(1), pp:25-31.
- [6].Celia M.P., Suruthi S., 2016, “Textile dye degradation using bacterial strains isolated from textile mill effluent”, Int J Appl Res, Vol:2, pp:337-41.
- [7].Sathishkumar K., AlSalhi M.S., Sanganyado E., Devanesan S., Arulprakash A., Rajasekar A., 2019, “Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent” Journal of Photochemistry and Photobiology B: Biology, Vol:200, pp:111655.
- [8].Venkata M.S., Chandrasekhar R.N, Krishna P.K., Karthikeyan J., 2002 “Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species”, Waste Management, Vol:22(6), pp:575-82.
- [9].Kurade M.B., Waghmode T.R., Patil S.M., Jeon B., Govindwar S.P., 2017, “Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium”, Chemical Engineering Journal, Vol:307, pp:1026-36.
- [10]. Guo G., Li, X., Tian F., et al., 2020, “Azo dye decolorization by a halotolerant consortium under microaerophilic conditions”, Chemosphere, Vol:244, pp:125510.
- [11].Cao J., Sanganyado E., Liu W., Zhang W., Liu Y., 2019, “Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium”, Journal of Environmental Management, Vol:242, pp:229-37.
- [12].Dubé E., Shareck F., Hurtubise Y., Daneault C., Beauregard M., 2008, “Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye”, Appl Microbiol Biotechnol, Vol:79(4), pp:597-603.
- [13].Park J., Kim W., Lee Y., Kim J., 2019, “Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis spores”, Journal of Microbiology and Biotechnology, Vol:29(9), pp:1383-90.
- [14].Gopinath K.P., Murugesan S., Abraham J., Muthukumar K., 2009, “Bacillus sp. mutant for improved biodegradation of Congo red: Random mutagenesis approach”, Bioresource Technology. Vol:100(24), pp:6295-300.
- [15].Wu J., Kim K., Sung N., Kim C., Lee Y., Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye Reactive Black 5, J Gen Appl Microbiol, Vol:55(1), pp:51-5.
- [16].Kalyani D.C., Telke A.A., Govindwar S.P., Jadhav J.P., 2009 “Biodegradation and Detoxification of Reactive Textile Dye by Isolated Pseudomonas sp. SUK1”, Water Environment Research, Vol:81(3), pp:298-307.
- [17].Shivaji S., Chaturvedi P., Begum Z., et al., 2009, “Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere”. International Journal of Systematic and Evolutionary Microbiology, Vol:59(12), pp:2977-86.
- [18].Ramesh A., Sharma S.K., Sharma M.P., Yadav N., Joshi O.P., 2014, “Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India, Applied Soil Ecology, Vol:73, pp:87-96.
- [19].Verma D.K., Hasan S.H., Singh D.K., Singh S., Singh Y., 2014, “Enhanced Biosorptive Remediation of Hexavalent Chromium Using Chemotailored Biomass of a Novel Soil Isolate Bacillus aryabhattai ITBHU02: Process Variables Optimization through Artificial Neural Network Linked Genetic Algorithm”, Ind Eng Chem Res., Vol:53(9), pp:3669-81.
- [20].Singh Y., Srivastava S.K., “Performance improvement of Bacillus aryabhattai ITBHU02 for high-throughput production of a tumor-inhibitory L-asparaginase using a kinetic model based approach”, J Chem Technol Biotechnol., Vol:89(1), pp:117-27.
- [21].Singh Y., Gundampati R.K., Jagannadham M.V., Srivastava S.K., 2013, “Extracellular l-Asparaginase from a Protease-Deficient Bacillus aryabhattai ITBHU02: Purification, Biochemical Characterization, and Evaluation of Antineoplastic Activity In Vitro”, Appl Biochem Biotechnol, Vol:171(7), pp:1759-74.
- [22].Tanamool V., Imai T., Danvirutai P., Kaewkannetra P., 2013, “An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01”, Biotechnol Bioproc E, Vol:18(1), pp:65-74.
- [23].Valdez-Nuñez R.A., Ríos-Ruiz W.F., Ormeño-Orrillo E., Torres-Chávez E.E., Torres-Delgado J., 2020, “Caracterización genética de bacterias endofíticas de arroz (Oryza sativa L.) con actividad antimicrobiana contra Burkholderia glumae”, Revista Argentina de Microbiología, Vol:52(4), pp:315-27.
- [24].Yaraguppi D.A., Deshpande S.H., Bagewadi Z.K., Kumar S., Muddapur U.M., 2021, “Genome Analysis of Bacillus aryabhattai to Identify Biosynthetic Gene Clusters and In Silico Methods to Elucidate its Antimicrobial Nature”, Int J Pept Res Ther, Vol:27, pp:1331–1342
- [25].Narsing R.M.P., Dong Z., Liu G., Li L., Xiao M., Li W., 2019, “Reclassification of Bacillus aryabhattai Shivaji et al., 2009 as a later heterotypic synonym of Bacillus megaterium de Bary 1884 (Approved Lists 1980)”, FEMS Microbiology Letters, Vol:366(22)
- [26].Oren A., Garrity G., 2020, “Notification of changes in taxonomic opinion previously published outside the IJSEM”, International Journal of Systematic and Evolutionary Microbiology, Vol:70(7), pp:4061-90.
- [27].Gupta R.S., Patel S., Saini N., Chen S., 2020, “Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species”. International Journal of Systematic and Evolutionary Microbiology, Vol:70(11), pp:5753-98.
- [28].Paz A., Carballo J., Pérez M.J., Domínguez J.M., 2016, “Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds”, World J Microbiol Biotechnol, Vol:32(10), pp:159.
- [29].Ríos R.W.F., Torres D.J., Valdez N.R.A., 2019, “Selección de microorganismos endofíticos de arroz (Oryza sativa L.) con actividad inhibitoria “in vitro” frente a Burkholderia glumae en la zona norte del Perú”
- [30]. National Center for Biotechnology Information, U.S. National Library of Medicine https://www.ncbi.nlm.nih.gov/nucleotide/MK449444.1?report=genbank&log$=nuclalign&blast_rank=3&RID=6UGN0003014&from=17&to=1171.
- [31].Katı H., Karaca B., Gülşen Ş.H., 2016, “Topraktan izole edilen Bacillus türlerinin tanımlanması ve biyolojik özelliklerinin araştırılması”, SAÜ Fen Bil Der, Vol:20, pp:281-90.
- [32]. Fidan s.,Korcan S.E., Ciğerci İ.H, Erdoğmuş F, 2012, “Effects of Some Metals on Laccase, MnP Enzym Activities and Dye Decolorization of Pleurotus species”, AKU J. Sci, Vol:12, pp:33-41
- [33].El Nemr A., El Sadaawy M.M., Khaled. A,. El Sikaily A., 2014, “Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus: Kinetics, equilibrium and thermodynamics”, Blue Biotechnology Journal, Vol:3(1), pp:121.
- [34].Asad S., Amoozegar M., Pourbabaee A., Sarbolouki M., Dastgheib S., 2007, “Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria”, Bioresource Technology, Vol:98(11), pp:2082-8.
- [35].Nair R.L., Begum D., Ragunathan D., 2017, “Biodegradation of Azo Dyes Using Bacillus megaterium and Its Phytotoxicity Study”, IOSR JESTFT, Vol:11(07), pp:12-20.
- [36] Pandey A., Singh P., Iyengar L., 2007, “Bacterial decolorization and degradation of azo dyes”, International Biodeterioration & Biodegradation, Vol:59(2), pp:73-84.
- [37]. Saratale R., Saratale G., Chang J., Govindwar S., 2011, “Bacterial decolorization and degradation of azo dyes: A review”, Journal of the Taiwan Institute of Chemical Engineers, Vol:42(1), pp:138-57.
- [38]. Lade H., Kadam A., Paul D., Govindwar S., 2015, “Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes”, EXCLI J, Vol:14, pp:158-74.
- [39]. Eva M.A., Zerin T., Shomi F.Y., 2020, “Microbiological Decolorization of Crystal Violet Dye by Indigenous Bacillus spp. Isolated from Garden Soil”, Journal of Environmetal Science, Toxicology and Food Technology, Vol:14(2), pp: 29-34 .
- [40].Yan Y., Zhang L., Yu M., et al., 2016, “The genome of Bacillus aryabhattai T61 reveals its adaptation to Tibetan Plateau environment”, Genes Genom, Vol:38(3), pp:293-301.
- [41].Pailan S., Gupta D., Apte S., Krishnamurthi S., Saha P., 2015, “Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India”, International Biodeterioration & Biodegradation, Vol:103, pp:191-5.
- [42].Park Y., Mun B., Kang S., et al., 2017, “Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones”, PLoS ONE, Vol:12(3), pp:0173203.
- [43].Lee S., Ka J., Song H., 2012, “Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil”, J Microbiol, Vol:50(1), pp:45-9.
- [44].Rathod M.G., Pathak A.P., 2017, “Efficient decolorization of textile dyes by alkaline protease producing bacterial consortia”, Indian Journal of Geo Marine Science, Vol:47(07), pp:1468-1477
- [45].Elarabi N.I., Abdelhadi A.A., Ahmed R.H., et al., 2020, “Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues”, Saudi Journal of Biological Sciences, Vol:27(9), pp:2207-14.
- [46].Paz A., Outeiriño D., Pinheiro de Souza Oliveira R,, Domínguez J.M., 2018, “Fed-batch production of vanillin by Bacillus aryabhattai BA03”, New Biotechnology, Vol:40, pp:186-91.
- [47].Paz A., Costa-Trigo I., Tugores F., Míguez M., de la Montaña J., Domínguez J.M., 2019, “Biotransformation of phenolic compounds by Bacillus aryabhattai”, Bioprocess Biosyst Eng, Vol:42(10), pp:1671-9.
- [48].Paz A., Carballo J., Pérez M.J., Domínguez J.M., 2017, “Biological treatment of model dyes and textile wastewaters”, Chemosphere, Vol:181, pp:168-77.
- [49].Wang F., Xu Z., Wang C., et al., 2021, “Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application”, International Journal of Biological Macromolecules, Vol:176, pp:37-46.
- [50].Paz A., Costa-Trigo I., Oliveira R.P.D.S., Domínguez J.M., 2020, “Ligninolytic Enzymes of Endospore-Forming Bacillus aryabhattai BA03”, Curr Microbiol. Vol:77(5), pp:702-9.
Year 2022,
Volume: 32 Issue: 2, 99 - 107, 30.06.2022
Safiye Elif Korcan
,
Kübra Çitekci
,
Büşra Aydın
,
Ahmed Badri Abed
,
Gülderen Uysal Akkuş
References
- [1].Pandey A., Singh P., Iyengar L., 2007, “Bacterial decolorization and degradation of azo dyes”, International Biodeterioration & Biodegradation,Vol:59(2), pp:73-84.
- [2].Kant R., 2012, “Textile dyeing industry an environmental hazard”, Natural Science, Vol:04(01), pp:22-6.
- [3].Hossen M.Z., Hussain M.E., Hakim A., Islam K., Uddin M.N., Azad A.K., 2019, “Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents”, Heliyon, Vol:5(7), pp:02068.
- [4].Aksu Z., 2005 “Application of biosorption for the removal of organic pollutants”, Process Biochemistry, Vol:;40(3-4), pp:997-1026.
- [5].Dellamatrice P.M., Silva-Stenico M.E., Moraes L.A.B., Fiore M.F., Monteiro R.T.R., 2017, “Degradation of textile dyes by cyanobacteria”, Brazilian Journal of Microbiology, Vol:48(1), pp:25-31.
- [6].Celia M.P., Suruthi S., 2016, “Textile dye degradation using bacterial strains isolated from textile mill effluent”, Int J Appl Res, Vol:2, pp:337-41.
- [7].Sathishkumar K., AlSalhi M.S., Sanganyado E., Devanesan S., Arulprakash A., Rajasekar A., 2019, “Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent” Journal of Photochemistry and Photobiology B: Biology, Vol:200, pp:111655.
- [8].Venkata M.S., Chandrasekhar R.N, Krishna P.K., Karthikeyan J., 2002 “Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species”, Waste Management, Vol:22(6), pp:575-82.
- [9].Kurade M.B., Waghmode T.R., Patil S.M., Jeon B., Govindwar S.P., 2017, “Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium”, Chemical Engineering Journal, Vol:307, pp:1026-36.
- [10]. Guo G., Li, X., Tian F., et al., 2020, “Azo dye decolorization by a halotolerant consortium under microaerophilic conditions”, Chemosphere, Vol:244, pp:125510.
- [11].Cao J., Sanganyado E., Liu W., Zhang W., Liu Y., 2019, “Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium”, Journal of Environmental Management, Vol:242, pp:229-37.
- [12].Dubé E., Shareck F., Hurtubise Y., Daneault C., Beauregard M., 2008, “Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye”, Appl Microbiol Biotechnol, Vol:79(4), pp:597-603.
- [13].Park J., Kim W., Lee Y., Kim J., 2019, “Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis spores”, Journal of Microbiology and Biotechnology, Vol:29(9), pp:1383-90.
- [14].Gopinath K.P., Murugesan S., Abraham J., Muthukumar K., 2009, “Bacillus sp. mutant for improved biodegradation of Congo red: Random mutagenesis approach”, Bioresource Technology. Vol:100(24), pp:6295-300.
- [15].Wu J., Kim K., Sung N., Kim C., Lee Y., Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye Reactive Black 5, J Gen Appl Microbiol, Vol:55(1), pp:51-5.
- [16].Kalyani D.C., Telke A.A., Govindwar S.P., Jadhav J.P., 2009 “Biodegradation and Detoxification of Reactive Textile Dye by Isolated Pseudomonas sp. SUK1”, Water Environment Research, Vol:81(3), pp:298-307.
- [17].Shivaji S., Chaturvedi P., Begum Z., et al., 2009, “Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere”. International Journal of Systematic and Evolutionary Microbiology, Vol:59(12), pp:2977-86.
- [18].Ramesh A., Sharma S.K., Sharma M.P., Yadav N., Joshi O.P., 2014, “Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India, Applied Soil Ecology, Vol:73, pp:87-96.
- [19].Verma D.K., Hasan S.H., Singh D.K., Singh S., Singh Y., 2014, “Enhanced Biosorptive Remediation of Hexavalent Chromium Using Chemotailored Biomass of a Novel Soil Isolate Bacillus aryabhattai ITBHU02: Process Variables Optimization through Artificial Neural Network Linked Genetic Algorithm”, Ind Eng Chem Res., Vol:53(9), pp:3669-81.
- [20].Singh Y., Srivastava S.K., “Performance improvement of Bacillus aryabhattai ITBHU02 for high-throughput production of a tumor-inhibitory L-asparaginase using a kinetic model based approach”, J Chem Technol Biotechnol., Vol:89(1), pp:117-27.
- [21].Singh Y., Gundampati R.K., Jagannadham M.V., Srivastava S.K., 2013, “Extracellular l-Asparaginase from a Protease-Deficient Bacillus aryabhattai ITBHU02: Purification, Biochemical Characterization, and Evaluation of Antineoplastic Activity In Vitro”, Appl Biochem Biotechnol, Vol:171(7), pp:1759-74.
- [22].Tanamool V., Imai T., Danvirutai P., Kaewkannetra P., 2013, “An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01”, Biotechnol Bioproc E, Vol:18(1), pp:65-74.
- [23].Valdez-Nuñez R.A., Ríos-Ruiz W.F., Ormeño-Orrillo E., Torres-Chávez E.E., Torres-Delgado J., 2020, “Caracterización genética de bacterias endofíticas de arroz (Oryza sativa L.) con actividad antimicrobiana contra Burkholderia glumae”, Revista Argentina de Microbiología, Vol:52(4), pp:315-27.
- [24].Yaraguppi D.A., Deshpande S.H., Bagewadi Z.K., Kumar S., Muddapur U.M., 2021, “Genome Analysis of Bacillus aryabhattai to Identify Biosynthetic Gene Clusters and In Silico Methods to Elucidate its Antimicrobial Nature”, Int J Pept Res Ther, Vol:27, pp:1331–1342
- [25].Narsing R.M.P., Dong Z., Liu G., Li L., Xiao M., Li W., 2019, “Reclassification of Bacillus aryabhattai Shivaji et al., 2009 as a later heterotypic synonym of Bacillus megaterium de Bary 1884 (Approved Lists 1980)”, FEMS Microbiology Letters, Vol:366(22)
- [26].Oren A., Garrity G., 2020, “Notification of changes in taxonomic opinion previously published outside the IJSEM”, International Journal of Systematic and Evolutionary Microbiology, Vol:70(7), pp:4061-90.
- [27].Gupta R.S., Patel S., Saini N., Chen S., 2020, “Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species”. International Journal of Systematic and Evolutionary Microbiology, Vol:70(11), pp:5753-98.
- [28].Paz A., Carballo J., Pérez M.J., Domínguez J.M., 2016, “Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds”, World J Microbiol Biotechnol, Vol:32(10), pp:159.
- [29].Ríos R.W.F., Torres D.J., Valdez N.R.A., 2019, “Selección de microorganismos endofíticos de arroz (Oryza sativa L.) con actividad inhibitoria “in vitro” frente a Burkholderia glumae en la zona norte del Perú”
- [30]. National Center for Biotechnology Information, U.S. National Library of Medicine https://www.ncbi.nlm.nih.gov/nucleotide/MK449444.1?report=genbank&log$=nuclalign&blast_rank=3&RID=6UGN0003014&from=17&to=1171.
- [31].Katı H., Karaca B., Gülşen Ş.H., 2016, “Topraktan izole edilen Bacillus türlerinin tanımlanması ve biyolojik özelliklerinin araştırılması”, SAÜ Fen Bil Der, Vol:20, pp:281-90.
- [32]. Fidan s.,Korcan S.E., Ciğerci İ.H, Erdoğmuş F, 2012, “Effects of Some Metals on Laccase, MnP Enzym Activities and Dye Decolorization of Pleurotus species”, AKU J. Sci, Vol:12, pp:33-41
- [33].El Nemr A., El Sadaawy M.M., Khaled. A,. El Sikaily A., 2014, “Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus: Kinetics, equilibrium and thermodynamics”, Blue Biotechnology Journal, Vol:3(1), pp:121.
- [34].Asad S., Amoozegar M., Pourbabaee A., Sarbolouki M., Dastgheib S., 2007, “Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria”, Bioresource Technology, Vol:98(11), pp:2082-8.
- [35].Nair R.L., Begum D., Ragunathan D., 2017, “Biodegradation of Azo Dyes Using Bacillus megaterium and Its Phytotoxicity Study”, IOSR JESTFT, Vol:11(07), pp:12-20.
- [36] Pandey A., Singh P., Iyengar L., 2007, “Bacterial decolorization and degradation of azo dyes”, International Biodeterioration & Biodegradation, Vol:59(2), pp:73-84.
- [37]. Saratale R., Saratale G., Chang J., Govindwar S., 2011, “Bacterial decolorization and degradation of azo dyes: A review”, Journal of the Taiwan Institute of Chemical Engineers, Vol:42(1), pp:138-57.
- [38]. Lade H., Kadam A., Paul D., Govindwar S., 2015, “Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes”, EXCLI J, Vol:14, pp:158-74.
- [39]. Eva M.A., Zerin T., Shomi F.Y., 2020, “Microbiological Decolorization of Crystal Violet Dye by Indigenous Bacillus spp. Isolated from Garden Soil”, Journal of Environmetal Science, Toxicology and Food Technology, Vol:14(2), pp: 29-34 .
- [40].Yan Y., Zhang L., Yu M., et al., 2016, “The genome of Bacillus aryabhattai T61 reveals its adaptation to Tibetan Plateau environment”, Genes Genom, Vol:38(3), pp:293-301.
- [41].Pailan S., Gupta D., Apte S., Krishnamurthi S., Saha P., 2015, “Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India”, International Biodeterioration & Biodegradation, Vol:103, pp:191-5.
- [42].Park Y., Mun B., Kang S., et al., 2017, “Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones”, PLoS ONE, Vol:12(3), pp:0173203.
- [43].Lee S., Ka J., Song H., 2012, “Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil”, J Microbiol, Vol:50(1), pp:45-9.
- [44].Rathod M.G., Pathak A.P., 2017, “Efficient decolorization of textile dyes by alkaline protease producing bacterial consortia”, Indian Journal of Geo Marine Science, Vol:47(07), pp:1468-1477
- [45].Elarabi N.I., Abdelhadi A.A., Ahmed R.H., et al., 2020, “Bacillus aryabhattai FACU: A promising bacterial strain capable of manipulate the glyphosate herbicide residues”, Saudi Journal of Biological Sciences, Vol:27(9), pp:2207-14.
- [46].Paz A., Outeiriño D., Pinheiro de Souza Oliveira R,, Domínguez J.M., 2018, “Fed-batch production of vanillin by Bacillus aryabhattai BA03”, New Biotechnology, Vol:40, pp:186-91.
- [47].Paz A., Costa-Trigo I., Tugores F., Míguez M., de la Montaña J., Domínguez J.M., 2019, “Biotransformation of phenolic compounds by Bacillus aryabhattai”, Bioprocess Biosyst Eng, Vol:42(10), pp:1671-9.
- [48].Paz A., Carballo J., Pérez M.J., Domínguez J.M., 2017, “Biological treatment of model dyes and textile wastewaters”, Chemosphere, Vol:181, pp:168-77.
- [49].Wang F., Xu Z., Wang C., et al., 2021, “Biochemical characterization of a tyrosinase from Bacillus aryabhattai and its application”, International Journal of Biological Macromolecules, Vol:176, pp:37-46.
- [50].Paz A., Costa-Trigo I., Oliveira R.P.D.S., Domínguez J.M., 2020, “Ligninolytic Enzymes of Endospore-Forming Bacillus aryabhattai BA03”, Curr Microbiol. Vol:77(5), pp:702-9.