Research Article
BibTex RIS Cite

Effects of Different Types of Surfactant Treatments on the Electromechanical Properties of Multiwalled Carbon Nanotubes Decorated Electrospun Nanofibers

Year 2024, Volume: 34 Issue: 1, 11 - 18, 31.03.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1117280

Abstract

Carbon nanotubes (CNTs) have a strong tendency to form agglomeration due to van der Waals interactions, which hinders their practical utilization. Therefore, an effective and stable dispersion of CNTs in a surfactant based solvent is very important for the realization of CNTs based nanocomposites in various applications. In this paper, influence of different types of surfactant on the electromechanical properties of multiwalled carbon nanotubes (MWCNTs) decprated electrospun thermoplastic polyurethane (TPU) nanofibers were investigated by UV-VIS spectroscopy, zeta potential, FT-IR analysis, scanning electron microscopy (SEM) and uniaxial tensile strain sensing. Obtained results suggest that type of surfactant has not only effecting the dispersion level of CNTs but also has a significant influence on the electromechanical properties of CNTs decorated elecrospun CNTs/TPU nanofibers. The results of the present study provide new insights into the design and tailoring the electromechanical properties of CNTs decorated electrospun nanofibers.

Supporting Institution

The Scientific and Technological Research Council of Turkey (Turkiye Bilimsel ve Teknolojik Arastirma Kurumu- TÜBİTAK)

Project Number

121M137

References

  • 1. Park, S., Vosguerichian, M., & Bao, Z. 2013. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 5(5), 1727-1752. 2. Sanli, A. 2020. Investigation of temperature effect on the electrical properties of MWCNTs/epoxy nanocomposites by electrochemical impedance spectroscopy. Advanced Composite Materials, 29(1), 31-41.
  • 3. Sanli, A., & Kanoun, O. 2020. Electrical impedance analysis of carbon nanotube/epoxy nanocomposite-based piezoresistive strain sensors under uniaxial cyclic static tensile loading. Journal of Composite Materials, 54(6), 845-855.
  • 4. Sanli, A., Benchirouf, A., Müller, C., & Kanoun, O. 2017. Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sensors and Actuators A: Physical, 254, 61-68.
  • 5. Sanli, A., Müller, C., Kanoun, O., Elibol, C., & Wagner, M. F. X. 2016. Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy. Composites Science and Technology, 122, 18-26.
  • 6. Sanli, A., Yildiz, K., & Uzun, M. 2021. Experimental study of the impact of electrospinning parameters on the electromechanical properties of strain sensitive electrospun multiwalled carbon nanotubes/thermoplastic polyurethane nanofibers. Advanced Composite Materials, 1-16.
  • 7. Kanoun, O., Müller, C., Benchirouf, A., Sanli, A., Dinh, T. N., Al-Hamry, A., ... & Bouhamed, A. 2014. Flexible carbon nanotube films for high performance strain sensors. Sensors, 14(6), 10042-10071.
  • 8. Al-Saleh M.H., U. Sundararaj U. 2009. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, vol 47, p. 1738–1746.
  • 9. Sandler, J. K. W., Pegel, S., Cadek, M., Gojny, F., Van Es, M., Lohmar, J., ... & Shaffer, M. S. P. 2004. A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 45(6), 2001-2015.
  • 10. Narh, K. A., Jallo, L., & Rhee, K. Y. 2008. The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polymer Composites, 29(7), 809-817.
  • 11. Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. 2010. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367.
  • 12. Vaisman, L., Wagner, H. D., & Marom, G. 2006. The role of surfactants in dispersion of carbon nanotubes. Advances in colloid and interface science, 128, 37-46.
  • 13. Duan, W. H., Wang, Q., & Collins, F. 2011. Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chemical Science, 2(7), 1407-1413.
  • 14. Yook, J. Y., Jun, J., & Kwak, S. 2010. Amino functionalization of carbon nanotube surfaces with NH3 plasma treatment. Applied Surface Science, 256(23), 6941-6944.
  • 15. Rahman, M. J., & Mieno, T. 2016. Safer production of water dispersible carbon nanotubes and nanotube/cotton composite materials. In Carbon Nanotubes-Current Progress of their Polymer Composites. IntechOpen.
  • 16. Labille, J., Pelinovskaya, N., Botta, C., Bottero, J. Y., & Masion, A. 2016. Fabrication of Graphene or Graphene Fabrication.
  • 17. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., ... & Kim, K. S. 2012. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical reviews, 112(11), 6156-6214.
  • 18. Ngo, C. L., Le, Q. T., Ngo, T. T., Nguyen, D. N., & Vu, M. T. 2013. Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 035017.
  • 19. Rausch, J., Zhuang, R. C., & Mäder, E. 2010. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 41(9), 1038-1046.
  • 20. Syrgiannis, Z., Hauke, F., Röhrl, J., Hundhausen, M., Graupner, R., Elemes, Y., & Hirsch, A. 2008. Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides.
  • 21. Lin, Y., Ng, K. M., Chan, C. M., Sun, G., & Wu, J. 2011. High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant. Journal of colloid and interface science, 358(2), 423-429.
  • 22. Zhang, G., Wang, F., Dai, J., & Huang, Z. 2016. Effect of functionalization of graphene nanoplatelets on the mechanical and thermal properties of silicone rubber composites. Materials, 9(2), 92.
  • 23. Emami, Z., Meng, Q., Pircheraghi, G., & Manas-Zloczower, I. 2015. Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose, 22(5), 3161-3176.
  • 24. Zang, J., Wan, Y. J., Zhao, L., & Tang, L. C. 2015. Fracture Behaviors of TRGO‐Filled Epoxy Nanocomposites with Different Dispersion/Interface Levels. Macromolecular Materials and Engineering, 300(7), 737-749.
  • 25. Shamsuri, A. A., & Md. Jamil, S. N. A. 2020. A short review on the effect of surfactants on the mechanico-thermal properties of polymer nanocomposites. Applied Sciences, 10(14), 4867.
  • 26. Choudhary, M., & Kamil, S. M. 2020. Phase diagram study of sodium dodecyl sulfate using dissipative particle dynamics. ACS omega, 5(36), 22891-22900.
  • 27. Miraç, A., Toçuoğlu, U., Kayış, F., & Akbulut, H. 2016. Karbon Nano Tüplerin Dispersiyonuna SDS Yüzey Aktif Maddesinin Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 3(1), 16-19.
  • 28. Niraula, T. P., Bhattarai, A., Chatterjee, S. K., & Biratnagar, N. 2014. Sodium dodecylsulphate: A very useful Surfactant for Scientific Investigations. Journal of Knowledge and Innovation, 2(1), 111-113.
  • 29. Nnyigide, O. S., Lee, S. G., & Hyun, K. (2019. In silico characterization of the binding modes of surfactants with bovine serum albumin. Scientific reports, 9(1), 1-16.
  • 30. Cui, H., Yan, X., Monasterio, M., & Xing, F. 2017. Effects of various surfactants on the dispersion of MWCNTs–OH in aqueous solution. Nanomaterials, 7(9), 262.
  • 31. Wang, H. 2009. Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid & Interface Science, 14(5), 364-371.
  • 32. Madni, I., Hwang, C. Y., Park, S. D., Choa, Y. H., & Kim, H. T. 2010. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 358(1-3), 101-107.
  • 33. Rajendran, D., Ramalingame, R., Adiraju, A., Nouri, H., & Kanoun, O. 2022. Role of Solvent Polarity on Dispersion Quality and Stability of Functionalized Carbon Nanotubes. Journal of Composites Science, 6(1), 26.
  • 34. Ndiaye, A. L., Varenne, C., Bonnet, P., Petit, E., Spinelle, L., Brunet, J., ... & Lauron, B. 2012. Elaboration of SWNTs-based gas sensors using dispersion techniques: Evaluating the role of the surfactant and its influence on the sensor response. Sensors and Actuators B: Chemical, 162(1), 95-101.
  • 35. Zou, B., Chen, S. J., Korayem, A. H., Collins, F., Wang, C. M., & Duan, W. H. 2015. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 85, 212-220.
  • 36. Chatterjee, S., Castro, M., & Feller, J. F. 2015. Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sensors and Actuators B: Chemical, 220, 840-849.
  • 37. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. 38. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. 1999. Optical properties of single-wall carbon nanotubes. Synthetic metals, 103(1-3), 2555-2558.
  • 39. Hamada, N., Sawada, S. I., & Oshiyama, A. 1992. New one-dimensional conductors: Graphitic microtubules. Physical review letters, 68(10), 1579.
  • 40. Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, U. M. 1992. Electronic structure of chiral graphene tubules. Applied physics letters, 60(18), 2204-2206.
  • 41. Jiang, L., Gao, L., & Sun, J. 2003. Production of aqueous colloidal dispersions of carbon nanotubes. Journal of colloid and interface science, 260(1), 89-94.
  • 42. Hertel, T., Walkup, R. E., & Avouris, P. 1998. Deformation of carbon nanotubes by surface van der Waals forces. Physical review B, 58(20), 13870.
  • 43. Yu, J., Grossiord, N., Koning, C. E., & Loos, J. 2007. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 45(3), 618-623.
  • 44. Lee, S. H., Woo, S. P., Kakati, N., Kim, D. J., & Yoon, Y. S. 2018. A comprehensive review of nanomaterials developed using electrophoresis process for high-efficiency energy conversion and storage systems. Energies, 11(11), 3122.
  • 45. Kumar, A., & Dixit, C. K. 2017. Methods for characterization of nanoparticles. In Advances in nanomedicine for the delivery of therapeutic nucleic acids (pp. 43-58). Woodhead Publishing.
  • 46. Bai, Y., Gao, J., Wang, C., Zhang, R., & Ma, W. 2016. Mixed surfactant solutions for the dispersion of multiwalled carbon nanotubes and the study of their antibacterial activity. Journal of Nanoscience and Nanotechnology, 16(3), 2239-2245.
  • 47. de la Cruz, E. F., Zheng, Y., Torres, E., Li, W., Song, W., & Burugapalli, K. 2012. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel.
  • 48. Ren, M., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C., & Shen, C. 2019. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chemical Engineering Journal, 360, 762-777.
  • 49. Li, Y., Zhou, B., Zheng, G., Liu, X., Li, T., Yan, C., ... & Guo, Z. 2018. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry C, 6(9), 2258-2269.
  • 50. Ugraskan, V., & Karaman, F. 2021. Polyaniline/Graphitic carbon nitride nanocomposites with improved thermoelectric properties. Journal of Electronic Materials, 50(6), 3455-3461.
  • 51. Ugraskan, V., Tari, E., & Yazici, O. 2021. Poly (3, 4-Ethylenedioxythiophene): Poly (Styrene Sulfonate)/Boron Carbide Hybrid Composites with Improved Thermoelectric Performance. Journal of Electronic Materials, 50(10), 5618-5624.
  • 52. Rohlfing, M. (2012). Redshift of excitons in carbon nanotubes caused by the environment polarizability. Physical Review Letters, 108(8), 087402.
  • 53. Wang, Y., Hao, J., Huang, Z., Zheng, G., Dai, K., Liu, C., & Shen, C. 2018. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 126, 360-371.
Year 2024, Volume: 34 Issue: 1, 11 - 18, 31.03.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1117280

Abstract

Project Number

121M137

References

  • 1. Park, S., Vosguerichian, M., & Bao, Z. 2013. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 5(5), 1727-1752. 2. Sanli, A. 2020. Investigation of temperature effect on the electrical properties of MWCNTs/epoxy nanocomposites by electrochemical impedance spectroscopy. Advanced Composite Materials, 29(1), 31-41.
  • 3. Sanli, A., & Kanoun, O. 2020. Electrical impedance analysis of carbon nanotube/epoxy nanocomposite-based piezoresistive strain sensors under uniaxial cyclic static tensile loading. Journal of Composite Materials, 54(6), 845-855.
  • 4. Sanli, A., Benchirouf, A., Müller, C., & Kanoun, O. 2017. Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sensors and Actuators A: Physical, 254, 61-68.
  • 5. Sanli, A., Müller, C., Kanoun, O., Elibol, C., & Wagner, M. F. X. 2016. Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy. Composites Science and Technology, 122, 18-26.
  • 6. Sanli, A., Yildiz, K., & Uzun, M. 2021. Experimental study of the impact of electrospinning parameters on the electromechanical properties of strain sensitive electrospun multiwalled carbon nanotubes/thermoplastic polyurethane nanofibers. Advanced Composite Materials, 1-16.
  • 7. Kanoun, O., Müller, C., Benchirouf, A., Sanli, A., Dinh, T. N., Al-Hamry, A., ... & Bouhamed, A. 2014. Flexible carbon nanotube films for high performance strain sensors. Sensors, 14(6), 10042-10071.
  • 8. Al-Saleh M.H., U. Sundararaj U. 2009. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, vol 47, p. 1738–1746.
  • 9. Sandler, J. K. W., Pegel, S., Cadek, M., Gojny, F., Van Es, M., Lohmar, J., ... & Shaffer, M. S. P. 2004. A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 45(6), 2001-2015.
  • 10. Narh, K. A., Jallo, L., & Rhee, K. Y. 2008. The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polymer Composites, 29(7), 809-817.
  • 11. Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. 2010. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367.
  • 12. Vaisman, L., Wagner, H. D., & Marom, G. 2006. The role of surfactants in dispersion of carbon nanotubes. Advances in colloid and interface science, 128, 37-46.
  • 13. Duan, W. H., Wang, Q., & Collins, F. 2011. Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chemical Science, 2(7), 1407-1413.
  • 14. Yook, J. Y., Jun, J., & Kwak, S. 2010. Amino functionalization of carbon nanotube surfaces with NH3 plasma treatment. Applied Surface Science, 256(23), 6941-6944.
  • 15. Rahman, M. J., & Mieno, T. 2016. Safer production of water dispersible carbon nanotubes and nanotube/cotton composite materials. In Carbon Nanotubes-Current Progress of their Polymer Composites. IntechOpen.
  • 16. Labille, J., Pelinovskaya, N., Botta, C., Bottero, J. Y., & Masion, A. 2016. Fabrication of Graphene or Graphene Fabrication.
  • 17. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., ... & Kim, K. S. 2012. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chemical reviews, 112(11), 6156-6214.
  • 18. Ngo, C. L., Le, Q. T., Ngo, T. T., Nguyen, D. N., & Vu, M. T. 2013. Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(3), 035017.
  • 19. Rausch, J., Zhuang, R. C., & Mäder, E. 2010. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 41(9), 1038-1046.
  • 20. Syrgiannis, Z., Hauke, F., Röhrl, J., Hundhausen, M., Graupner, R., Elemes, Y., & Hirsch, A. 2008. Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides.
  • 21. Lin, Y., Ng, K. M., Chan, C. M., Sun, G., & Wu, J. 2011. High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant. Journal of colloid and interface science, 358(2), 423-429.
  • 22. Zhang, G., Wang, F., Dai, J., & Huang, Z. 2016. Effect of functionalization of graphene nanoplatelets on the mechanical and thermal properties of silicone rubber composites. Materials, 9(2), 92.
  • 23. Emami, Z., Meng, Q., Pircheraghi, G., & Manas-Zloczower, I. 2015. Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose, 22(5), 3161-3176.
  • 24. Zang, J., Wan, Y. J., Zhao, L., & Tang, L. C. 2015. Fracture Behaviors of TRGO‐Filled Epoxy Nanocomposites with Different Dispersion/Interface Levels. Macromolecular Materials and Engineering, 300(7), 737-749.
  • 25. Shamsuri, A. A., & Md. Jamil, S. N. A. 2020. A short review on the effect of surfactants on the mechanico-thermal properties of polymer nanocomposites. Applied Sciences, 10(14), 4867.
  • 26. Choudhary, M., & Kamil, S. M. 2020. Phase diagram study of sodium dodecyl sulfate using dissipative particle dynamics. ACS omega, 5(36), 22891-22900.
  • 27. Miraç, A., Toçuoğlu, U., Kayış, F., & Akbulut, H. 2016. Karbon Nano Tüplerin Dispersiyonuna SDS Yüzey Aktif Maddesinin Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 3(1), 16-19.
  • 28. Niraula, T. P., Bhattarai, A., Chatterjee, S. K., & Biratnagar, N. 2014. Sodium dodecylsulphate: A very useful Surfactant for Scientific Investigations. Journal of Knowledge and Innovation, 2(1), 111-113.
  • 29. Nnyigide, O. S., Lee, S. G., & Hyun, K. (2019. In silico characterization of the binding modes of surfactants with bovine serum albumin. Scientific reports, 9(1), 1-16.
  • 30. Cui, H., Yan, X., Monasterio, M., & Xing, F. 2017. Effects of various surfactants on the dispersion of MWCNTs–OH in aqueous solution. Nanomaterials, 7(9), 262.
  • 31. Wang, H. 2009. Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid & Interface Science, 14(5), 364-371.
  • 32. Madni, I., Hwang, C. Y., Park, S. D., Choa, Y. H., & Kim, H. T. 2010. Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 358(1-3), 101-107.
  • 33. Rajendran, D., Ramalingame, R., Adiraju, A., Nouri, H., & Kanoun, O. 2022. Role of Solvent Polarity on Dispersion Quality and Stability of Functionalized Carbon Nanotubes. Journal of Composites Science, 6(1), 26.
  • 34. Ndiaye, A. L., Varenne, C., Bonnet, P., Petit, E., Spinelle, L., Brunet, J., ... & Lauron, B. 2012. Elaboration of SWNTs-based gas sensors using dispersion techniques: Evaluating the role of the surfactant and its influence on the sensor response. Sensors and Actuators B: Chemical, 162(1), 95-101.
  • 35. Zou, B., Chen, S. J., Korayem, A. H., Collins, F., Wang, C. M., & Duan, W. H. 2015. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 85, 212-220.
  • 36. Chatterjee, S., Castro, M., & Feller, J. F. 2015. Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sensors and Actuators B: Chemical, 220, 840-849.
  • 37. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. 38. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. 1999. Optical properties of single-wall carbon nanotubes. Synthetic metals, 103(1-3), 2555-2558.
  • 39. Hamada, N., Sawada, S. I., & Oshiyama, A. 1992. New one-dimensional conductors: Graphitic microtubules. Physical review letters, 68(10), 1579.
  • 40. Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, U. M. 1992. Electronic structure of chiral graphene tubules. Applied physics letters, 60(18), 2204-2206.
  • 41. Jiang, L., Gao, L., & Sun, J. 2003. Production of aqueous colloidal dispersions of carbon nanotubes. Journal of colloid and interface science, 260(1), 89-94.
  • 42. Hertel, T., Walkup, R. E., & Avouris, P. 1998. Deformation of carbon nanotubes by surface van der Waals forces. Physical review B, 58(20), 13870.
  • 43. Yu, J., Grossiord, N., Koning, C. E., & Loos, J. 2007. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 45(3), 618-623.
  • 44. Lee, S. H., Woo, S. P., Kakati, N., Kim, D. J., & Yoon, Y. S. 2018. A comprehensive review of nanomaterials developed using electrophoresis process for high-efficiency energy conversion and storage systems. Energies, 11(11), 3122.
  • 45. Kumar, A., & Dixit, C. K. 2017. Methods for characterization of nanoparticles. In Advances in nanomedicine for the delivery of therapeutic nucleic acids (pp. 43-58). Woodhead Publishing.
  • 46. Bai, Y., Gao, J., Wang, C., Zhang, R., & Ma, W. 2016. Mixed surfactant solutions for the dispersion of multiwalled carbon nanotubes and the study of their antibacterial activity. Journal of Nanoscience and Nanotechnology, 16(3), 2239-2245.
  • 47. de la Cruz, E. F., Zheng, Y., Torres, E., Li, W., Song, W., & Burugapalli, K. 2012. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel.
  • 48. Ren, M., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C., & Shen, C. 2019. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chemical Engineering Journal, 360, 762-777.
  • 49. Li, Y., Zhou, B., Zheng, G., Liu, X., Li, T., Yan, C., ... & Guo, Z. 2018. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry C, 6(9), 2258-2269.
  • 50. Ugraskan, V., & Karaman, F. 2021. Polyaniline/Graphitic carbon nitride nanocomposites with improved thermoelectric properties. Journal of Electronic Materials, 50(6), 3455-3461.
  • 51. Ugraskan, V., Tari, E., & Yazici, O. 2021. Poly (3, 4-Ethylenedioxythiophene): Poly (Styrene Sulfonate)/Boron Carbide Hybrid Composites with Improved Thermoelectric Performance. Journal of Electronic Materials, 50(10), 5618-5624.
  • 52. Rohlfing, M. (2012). Redshift of excitons in carbon nanotubes caused by the environment polarizability. Physical Review Letters, 108(8), 087402.
  • 53. Wang, Y., Hao, J., Huang, Z., Zheng, G., Dai, K., Liu, C., & Shen, C. 2018. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon, 126, 360-371.
There are 51 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Abdulkadir Şanlı 0000-0002-9768-9005

Şule Pınar Cinfer 0000-0003-1075-0609

Afife Binnaz Yoruç Hazar 0000-0001-7281-2305

Project Number 121M137
Early Pub Date March 31, 2024
Publication Date March 31, 2024
Submission Date May 16, 2022
Acceptance Date November 8, 2022
Published in Issue Year 2024 Volume: 34 Issue: 1

Cite

APA Şanlı, A., Cinfer, Ş. P., & Yoruç Hazar, A. B. (2024). Effects of Different Types of Surfactant Treatments on the Electromechanical Properties of Multiwalled Carbon Nanotubes Decorated Electrospun Nanofibers. Textile and Apparel, 34(1), 11-18. https://doi.org/10.32710/tekstilvekonfeksiyon.1117280

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.