Araştırma Makalesi
BibTex RIS Kaynak Göster

Development of a Conductive Polypyrrole and Magnetic Ferrite Particles Decorated-Polyester Nonwoven Composite as an Electromagnetic Interference Shield Material

Yıl 2024, Cilt: 34 Sayı: 2, 147 - 161
https://doi.org/10.32710/tekstilvekonfeksiyon.1140423

Öz

Electromagnetic Interference Shielding (EMI) shields have become more important because of the detrimental effects EMI has on systems, equipment, and even human health. High yields of conductive polypyrrole and magnetic (nano)particles (MPs) were consecutively placed on PET nonwoven to highlight this challenge. Surface resistance was measured to identify the influence of polymerization factors including oxidant content and MP deposition order. The MPs' magnetic properties and morphology were examined using Vibrating Sample Magnetometer (VSM) and Scanning Electron Microscopy (SEM). The electromagnetic shielding effectiveness (EMSE) and the relative shielding effectiveness (Re) and absorption (Ab) within the 30 MHz-3 GHz range were used to assess the textiles' EMI shielding properties. Accordingly, the most considerable absorption-dominant attenuation (74.7% at 2.20 GHz) and maximum EMSE value (6.60 dB) were found in the PET/PPy/Fe3O4 composite.

Kaynakça

  • 1. Pall ML. 2016. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. Journal of Chemical Neuroanatomy, 75, 43-51.
  • 2. Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. 2019. Risks to Health and Well-Being from Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Frontiers in Public Health, 7, 1-10.
  • 3. Avloni J, Ouyang M, Florio L, Henn A R, Sparavigna A. 2007. Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials, 20(3), 241-254.
  • 4. Yavuz Ö, Ram M, Aldissi M, Poddar P, Srikanth H. 2005. Polypyrrole composites for shielding applications. Synthetic Metals, 151(3), 211-217.
  • 5. Maity S, Singha K, Debnath P, Singha M. 2013. Textiles in electromagnetic Radiation Protection. Journal of Safety Engineering, 2(2), 11-19.
  • 6. Erdoğan M K, Karakişla M, Saçak M. 2012. Preparation, Characterization and Electromagnetic Shielding Effectiveness of Conductive Polythiophene/Poly(ethylene terephthalate) Composite Fibers. Journal of Macromolecular Science, Part A, 49(6), 473-482.
  • 7. Kim M, Kim H, Byun S, Jeong S, Hong Y, Joo J, Song K, Kim J, Lee C, Lee J. 2002. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synthetic Metals,126(2-3), 233-239.
  • 8. Yildiz Z, Usta I, Gungor A. 2012. Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Textile Research Journal, 82(20), 2137-2148.
  • 9. Tunakova V, Gregr J, Tunák M, Dohnal G. 2016. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: Optimization of process parameters. Journal of Industrial Textiles, 47(5), 686-711.
  • 10. Rubeziene V, Abraitienė A, Baltušnikaitė-Guzaitienė J, Varnaite-Zuravliova S, Sankauskaitė A, Kancleris Z, Ragulis P, Šlekas G. 2018. The influence of distribution and deposit of conductive coating on shielding effectiveness of textiles. The Journal of The Textile Institute, 109(3), 358-367.
  • 11. Ammayappan L, Jose S, Chakraborty S, Pan N C. 2016. Conductive polymer based technical textiles from polyaniline. Asian Dyer, 13(3), 65-70.
  • 12. Jagatheesan K, Ramasamy A, Das A, Basu A. 2015. Fabrics and their composites for electromagnetic shielding applications. Textile Progress, 47(2), 87-161. 13. Kuhn H H, Child A D, Kimbrell W C. 1995. Toward real applications of conductive polymers. Synthetic Metals, 71(1), 2139-2142.
  • 14. Hoghoghifard S, Mokhtari H, Dehghani S. 2018. Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures. Journal of Industrial Textiles, 47(5), 587-601.
  • 15. Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska M I. 2015. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synthetic Metals, 202, 49-62.
  • 16. Abbasi AMR, Militky J. 2013. EMI Shielding Effectiveness of Polypyrrole Coated Glass Fabric. Journal Of Chemistry and Chemical Engineering, 7, 256-259.
  • 17. Unver IS, Durmus Z. 2017. Magnetic and microwave absorption properties of magnetite (Fe3O4)@ conducting polymer (PANI, PPY, PT) composites. IEEE Transaction on Magnetics, 53(10), 1.
  • 18. Akman O, Kavas H, Baykal A, Durmus Z, Aktaş B, Sözeri H. 2013. Microwave Absorption Properties of BaFe12O19-TiO2 Composite Coated with Conducting Polymer. Journal of Superconductivity and Novel Magnetism, 26(4), 1369-1373.
  • 19. Wencai Z, Hu X, Bai X, Zhou S, Yan J, Chen P. 2011. Synthesis and Electromagnetic, Microwave Absorbing Properties of Core-Shell Fe3O4-Poly(3, 4-ethylenedioxythiophene) Microspheres. ACS Applied Materials & Interfaces, 3(10), 3839-3845.
  • 20. Yan L, Wang X, Zhao S, Li Y, Gao Z, Zhang B, Cao M, Qin Y. 2017. Highly Efficient Microwave Absorption of Magnetic Nanospindle–Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Applied Materials & Interfaces, 9(12), 11116-11125.
  • 21. Li B, Weng X, Wu G, Zhang Y, LV X, Gu G. 2017. Synthesis of Fe3O4/polypyrrole/polyaniline nanocomposites by in-situ method and their electromagnetic absorbing properties. Journal of Saudi Chemical Society, 21(4), 466-472.
  • 22. Li L, Li M, Qi S. 2017. Preparation and microwave absorption properties of silver-coated Nd-deposed strontium ferrite hollow microspheres with polypyrrole composites. Journal of Materials Science: Materials in Electronics, 28, 4288-4294.
  • 23. Khairy M, Gouda ME. 2015. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. Journal of Advanced Research, 6(4), 555-562.
  • 24. Yang H, Ye T, Lin Y, Liu M. 2015. Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19-CoFe2O4 powders. Journal of Alloys and Compounds, 653, 135-139.
  • 25. Zhao H, Hou L, Lu Y. 2016. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Materials & Design, 95, 97-106.
  • 26. Zhao H, Hou L, Lu Y. 2016. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chemical Engineering Journal, 297, 170-179.
  • 27. Firoz BK, Dhandapani P, Maruthamuthu S, Anbu KM. 2012. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90(4), 1557-1563.
  • 28. Engin SF, Kayali E, Sarac A. 2018. Polypyrrole/barium titanate/poly(acrylonitrile-co-methylacrylate)–deposited cotton fabrics: Electromagnetic shielding. Journal of Industrial Textiles, 47(5), 656-673.
  • 29. Elnahrawy A, Haroun A, Hamadneh I, Al-Dujaili A, Kamel S. 2017. Conducting Cellulose/TiO 2 composites by in Situ Polymerization of Pyrrole. Carbohydrate Polymers, 168, 182-190.
  • 30. Maráková N, Humpolíček P, Kašpárková V, Capáková Z, Martinková L, Bober P, Trchová M, Stejskal J. 2017. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 396, 169-176.
  • 31. Yörük AE, Erdoğan MK, Karakışla M, Saçak M. 2021. Deposition of electrically-conductive polyaniline/ferrite nanoparticles onto the polypropylene nonwoven for the development of an electromagnetic interference shield material. The Journal of The Textile Institute Advance online publication. [DOI: 10.1080/00405000.2021.2005279]
  • 32. Khalil M. 2015. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors. Arabian Journal of Chemitry, 8(2), 279-284.
  • 33. Babayan V, Kazantseva NE, Moučka R, Stejskal J. 2017. Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes. Cellulose, 24(8), 3445-3451.
  • 34. Najar S, Kaynak A, Foitzik R. 2007. Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synthetic Metals, 157(1), 1-4.
  • 35. Lu X, Mao H, Zhang W. 2009. Fabrication of core‐shell Fe3O4/polypyrrole and hollow polypyrrole microspheres. Polymer Composites, 30(6), 847-854.
  • 36. Hedayati K, Azarakhsh S, Ghanbari D. 2016. Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method. Journal of Nanostructures, 6(2), 127-131.
  • 37. Vignesh RH, Sankar KV, Amaresh S, Lee YS, Selvan RK. 2015. Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors and Actuators B: Chemical, 220, 50-58.
  • 38. Zhang H, Liu Y, Zhou Y. 2014. Preparation of magnetic PET fabric loaded with Fe3 O4 nanoparticles by hydrothermal method. The Journal of The Textile Institute, 106(10), 1-11.
  • 39. Varshney S, Singh K, Ohlan A, Jain V, Dutta V, Dhawan S. 2012. Synthesis, characterization and surface properties of Fe2O3 decorated ferromagnetic polypyrrole nanocomposites. Journal of Alloys and Compounds, 538, 107-114.
  • 40. Kulkarni G, Kandesar P, Velhal N, Kim H, Puri V. 2021. Facile synthesis of coral cauliflower-like polypyrrole hemispheres toward screening electromagnetic interference pollution. Journal of Applied Polymer Science, 138(22), 1-9.
  • 41. Yildiz Z, Usta I, Gungor A. 2012. Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Textile Research Journal, 82(20), 2137-2148.
  • 42. Saini P. 2015. Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects. NJ, USA: John Wiley & Sons, Inc.
  • 43. Dhawan S, Ohlan A, Singh K. 2011. Designing of nano composites of conducting polymers for EMI shielding, Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications, InTech.
  • 44. Huo J, Wang L, Yu H. 2009. Polymeric nanocomposites for electromagnetic wave absorption. Journal of Material Science, 44(15), 3917-3927.
Yıl 2024, Cilt: 34 Sayı: 2, 147 - 161
https://doi.org/10.32710/tekstilvekonfeksiyon.1140423

Öz

Kaynakça

  • 1. Pall ML. 2016. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. Journal of Chemical Neuroanatomy, 75, 43-51.
  • 2. Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. 2019. Risks to Health and Well-Being from Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Frontiers in Public Health, 7, 1-10.
  • 3. Avloni J, Ouyang M, Florio L, Henn A R, Sparavigna A. 2007. Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials, 20(3), 241-254.
  • 4. Yavuz Ö, Ram M, Aldissi M, Poddar P, Srikanth H. 2005. Polypyrrole composites for shielding applications. Synthetic Metals, 151(3), 211-217.
  • 5. Maity S, Singha K, Debnath P, Singha M. 2013. Textiles in electromagnetic Radiation Protection. Journal of Safety Engineering, 2(2), 11-19.
  • 6. Erdoğan M K, Karakişla M, Saçak M. 2012. Preparation, Characterization and Electromagnetic Shielding Effectiveness of Conductive Polythiophene/Poly(ethylene terephthalate) Composite Fibers. Journal of Macromolecular Science, Part A, 49(6), 473-482.
  • 7. Kim M, Kim H, Byun S, Jeong S, Hong Y, Joo J, Song K, Kim J, Lee C, Lee J. 2002. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synthetic Metals,126(2-3), 233-239.
  • 8. Yildiz Z, Usta I, Gungor A. 2012. Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Textile Research Journal, 82(20), 2137-2148.
  • 9. Tunakova V, Gregr J, Tunák M, Dohnal G. 2016. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: Optimization of process parameters. Journal of Industrial Textiles, 47(5), 686-711.
  • 10. Rubeziene V, Abraitienė A, Baltušnikaitė-Guzaitienė J, Varnaite-Zuravliova S, Sankauskaitė A, Kancleris Z, Ragulis P, Šlekas G. 2018. The influence of distribution and deposit of conductive coating on shielding effectiveness of textiles. The Journal of The Textile Institute, 109(3), 358-367.
  • 11. Ammayappan L, Jose S, Chakraborty S, Pan N C. 2016. Conductive polymer based technical textiles from polyaniline. Asian Dyer, 13(3), 65-70.
  • 12. Jagatheesan K, Ramasamy A, Das A, Basu A. 2015. Fabrics and their composites for electromagnetic shielding applications. Textile Progress, 47(2), 87-161. 13. Kuhn H H, Child A D, Kimbrell W C. 1995. Toward real applications of conductive polymers. Synthetic Metals, 71(1), 2139-2142.
  • 14. Hoghoghifard S, Mokhtari H, Dehghani S. 2018. Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures. Journal of Industrial Textiles, 47(5), 587-601.
  • 15. Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska M I. 2015. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synthetic Metals, 202, 49-62.
  • 16. Abbasi AMR, Militky J. 2013. EMI Shielding Effectiveness of Polypyrrole Coated Glass Fabric. Journal Of Chemistry and Chemical Engineering, 7, 256-259.
  • 17. Unver IS, Durmus Z. 2017. Magnetic and microwave absorption properties of magnetite (Fe3O4)@ conducting polymer (PANI, PPY, PT) composites. IEEE Transaction on Magnetics, 53(10), 1.
  • 18. Akman O, Kavas H, Baykal A, Durmus Z, Aktaş B, Sözeri H. 2013. Microwave Absorption Properties of BaFe12O19-TiO2 Composite Coated with Conducting Polymer. Journal of Superconductivity and Novel Magnetism, 26(4), 1369-1373.
  • 19. Wencai Z, Hu X, Bai X, Zhou S, Yan J, Chen P. 2011. Synthesis and Electromagnetic, Microwave Absorbing Properties of Core-Shell Fe3O4-Poly(3, 4-ethylenedioxythiophene) Microspheres. ACS Applied Materials & Interfaces, 3(10), 3839-3845.
  • 20. Yan L, Wang X, Zhao S, Li Y, Gao Z, Zhang B, Cao M, Qin Y. 2017. Highly Efficient Microwave Absorption of Magnetic Nanospindle–Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Applied Materials & Interfaces, 9(12), 11116-11125.
  • 21. Li B, Weng X, Wu G, Zhang Y, LV X, Gu G. 2017. Synthesis of Fe3O4/polypyrrole/polyaniline nanocomposites by in-situ method and their electromagnetic absorbing properties. Journal of Saudi Chemical Society, 21(4), 466-472.
  • 22. Li L, Li M, Qi S. 2017. Preparation and microwave absorption properties of silver-coated Nd-deposed strontium ferrite hollow microspheres with polypyrrole composites. Journal of Materials Science: Materials in Electronics, 28, 4288-4294.
  • 23. Khairy M, Gouda ME. 2015. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. Journal of Advanced Research, 6(4), 555-562.
  • 24. Yang H, Ye T, Lin Y, Liu M. 2015. Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19-CoFe2O4 powders. Journal of Alloys and Compounds, 653, 135-139.
  • 25. Zhao H, Hou L, Lu Y. 2016. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Materials & Design, 95, 97-106.
  • 26. Zhao H, Hou L, Lu Y. 2016. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chemical Engineering Journal, 297, 170-179.
  • 27. Firoz BK, Dhandapani P, Maruthamuthu S, Anbu KM. 2012. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers, 90(4), 1557-1563.
  • 28. Engin SF, Kayali E, Sarac A. 2018. Polypyrrole/barium titanate/poly(acrylonitrile-co-methylacrylate)–deposited cotton fabrics: Electromagnetic shielding. Journal of Industrial Textiles, 47(5), 656-673.
  • 29. Elnahrawy A, Haroun A, Hamadneh I, Al-Dujaili A, Kamel S. 2017. Conducting Cellulose/TiO 2 composites by in Situ Polymerization of Pyrrole. Carbohydrate Polymers, 168, 182-190.
  • 30. Maráková N, Humpolíček P, Kašpárková V, Capáková Z, Martinková L, Bober P, Trchová M, Stejskal J. 2017. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 396, 169-176.
  • 31. Yörük AE, Erdoğan MK, Karakışla M, Saçak M. 2021. Deposition of electrically-conductive polyaniline/ferrite nanoparticles onto the polypropylene nonwoven for the development of an electromagnetic interference shield material. The Journal of The Textile Institute Advance online publication. [DOI: 10.1080/00405000.2021.2005279]
  • 32. Khalil M. 2015. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors. Arabian Journal of Chemitry, 8(2), 279-284.
  • 33. Babayan V, Kazantseva NE, Moučka R, Stejskal J. 2017. Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes. Cellulose, 24(8), 3445-3451.
  • 34. Najar S, Kaynak A, Foitzik R. 2007. Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synthetic Metals, 157(1), 1-4.
  • 35. Lu X, Mao H, Zhang W. 2009. Fabrication of core‐shell Fe3O4/polypyrrole and hollow polypyrrole microspheres. Polymer Composites, 30(6), 847-854.
  • 36. Hedayati K, Azarakhsh S, Ghanbari D. 2016. Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method. Journal of Nanostructures, 6(2), 127-131.
  • 37. Vignesh RH, Sankar KV, Amaresh S, Lee YS, Selvan RK. 2015. Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors and Actuators B: Chemical, 220, 50-58.
  • 38. Zhang H, Liu Y, Zhou Y. 2014. Preparation of magnetic PET fabric loaded with Fe3 O4 nanoparticles by hydrothermal method. The Journal of The Textile Institute, 106(10), 1-11.
  • 39. Varshney S, Singh K, Ohlan A, Jain V, Dutta V, Dhawan S. 2012. Synthesis, characterization and surface properties of Fe2O3 decorated ferromagnetic polypyrrole nanocomposites. Journal of Alloys and Compounds, 538, 107-114.
  • 40. Kulkarni G, Kandesar P, Velhal N, Kim H, Puri V. 2021. Facile synthesis of coral cauliflower-like polypyrrole hemispheres toward screening electromagnetic interference pollution. Journal of Applied Polymer Science, 138(22), 1-9.
  • 41. Yildiz Z, Usta I, Gungor A. 2012. Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Textile Research Journal, 82(20), 2137-2148.
  • 42. Saini P. 2015. Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects. NJ, USA: John Wiley & Sons, Inc.
  • 43. Dhawan S, Ohlan A, Singh K. 2011. Designing of nano composites of conducting polymers for EMI shielding, Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications, InTech.
  • 44. Huo J, Wang L, Yu H. 2009. Polymeric nanocomposites for electromagnetic wave absorption. Journal of Material Science, 44(15), 3917-3927.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler
Bölüm Makaleler
Yazarlar

Burhan Beycan 0000-0002-2759-1985

Meryem Kalkan Erdoğan 0000-0002-2905-4438

Meral Karakışla 0000-0001-7036-094X

Mehmet Saçak 0000-0001-9395-8303

Erken Görünüm Tarihi 1 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 4 Temmuz 2022
Kabul Tarihi 3 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 34 Sayı: 2

Kaynak Göster

APA Beycan, B., Kalkan Erdoğan, M., Karakışla, M., Saçak, M. (2024). Development of a Conductive Polypyrrole and Magnetic Ferrite Particles Decorated-Polyester Nonwoven Composite as an Electromagnetic Interference Shield Material. Textile and Apparel, 34(2), 147-161. https://doi.org/10.32710/tekstilvekonfeksiyon.1140423

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.