Research Article
BibTex RIS Cite

Improvement of Mechanical And Light Transmittance Properties of PU Foam Coated Curtain Fabrics

Year 2024, Volume: 34 Issue: 3, 261 - 275, 30.09.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1313835

Abstract

In foam coating, the main factors are the foam density of the coating material and the compatibility among foam structure, the coating material and the fabric surface. In this study, the results of breaking strength, breaking elongation, tear strength and light transmittance testing were compared according to the fabric structure, coating recipes, foam density and the coat layer viscosity statistically. The high yarn density of warp threads per unit length in polyester woven fabric leads to an increase in tensile strength. The best results in tensile strength and elongation at break experiments were obtained at coating recipe 4. As a result, the minimum light transmittance value was 1.0347 and the maximum light transmittance value was 1.12 by using coating recipe 4, respectively. Consequently, the low filler content, soft binder ratio and foam density had a positive effect on the mechanical and light transmittance properties of foam coated fabrics.

References

  • 1. Bulut Y, Sular V. 2008. General properties and performance pests of fabrics produced by coating and lamination techniques. Journal of Textile and Engineering, 15(70), 5-16.
  • 2.Sen A. K. 2007. Coated Textiles-Principles and Applications, 2nd edn. CRC Press, Boca Raton, FL, USA, pp. 94-95.
  • 3.Kinnunen-Raudaskoski K., Hjelt T., Kenttä E., Forsström U. 2014. Thin coatings by foam coating. Tappi Journal, 13(7), 9-19.
  • 4.Kenttä, E., Koskela, H., Paunonen, S., Kinnunen Raudaskoski, K., Hjelt, T. 2016. Functional surfaces produced by foam coating. TAPPI J.,15(8), pp.515-521.
  • 5.Kumar PS, Yaashikaa PR. 2018. Sustainable dyeing techniques, Sustainable innovations in textile chemical processes. Springer, Singapore, pp 1–29.
  • 6.Song MS, Hou JB, Lu YH, Lin J, Cheng DH. 2013. Performance of foam and application in foam finishing of textile, 3rd International Conference on Textile Engineering and Materials, vol 821–822, pp 661–664.
  • 7.Rather L.J, Jameel S, Dar OA, Ganie SA, Bhat KA, Mohammad F. 2019. Advances in the sustainable technologies for water conservation in textile industries., Water in Textiles and Fashion. Woodhead Publishing, Sawston, pp 175–194
  • 8.Van der Walt G H J, Van Rensburg N J J. 1986. Low-liquor dyeing and finishing. Textile Progress, 14, pp.1–50
  • 9. Chen S, Wang C, Fei L, Liu H. 2017. A novel strategy for realising environmentally friendly pigment foam dyeing using polyoxyethylene ether surfactant. Color Technol, 133, pp.253–261.
  • 10. Gopalakrishnan M, Punitha V, Saravanan D. 2019. Water conservation in textile wet processing. Water in Textiles and Fashion, Woodhead Publishing, Sawston, pp 135–153.
  • 11. Hou Q, Wang X. 2017. The effect of PVA foaming characteristics on foam forming. Cellulose, 24, pp.4939–4948.
  • 12. Bhavsar PS, Zoccola M, Patrucco A, Montarsolo A, Mossotti R, Giansetti M, Rovero G, Maier SS, Muresan A, Tonin C. 2017. Superheated water hydrolyzed keratin: a new application as a foaming agent in foam dyeing of cotton and wool fabrics. ACS Sustain Chem Eng, 5, pp.9150–9159.
  • 13. Li K, Zhang, JF, Li QJ. 2011. Study on foaming properties of sodium dodecyl sulfate for textile foam dyeing and finishing. Advanced Materials Research. Trans Tech Publication, vol 332–334, pp 1515–1519
  • 14. Gregorian RS, Namboodri CG, Young RE, Baitinger WF. 1983. Foam application of phosphonium salt flame retardants. Textile Research Journal, 53, pp.148–152
  • 15. Ashrafi, F., Lavasani, M.R. 2019. Improvement of the mechanical and thermal properties of polyester nonwoven fabrics by PTFE coating. Turkish Journal of Chemistry, 43: pp.760-765.
  • 16. Wadsworth LC, Wey PS. 1988. Effects of differential foam application of durable press and fluorochemical finishes to cotton fabric. Journal of Industrial Textiles, 17, pp.152–166
  • 17. Yang CQ, Perenich TA, Fateley WG. 1989. Studies of foam finished cotton fabrics using FT-IR photoacoustic spectroscopy. Textile Research Journal, 59, pp.562–568.
  • 18. Liu Y, Xin JH, Choi CH. 2012. Cotton fabrics with single-faced superhydrophobicity. Langmuir, 28, pp.17426–17434
  • 19. Muhammad M.and Shaheen S. 2020. Development of sustainable and cost efficient textile foam-finishing and its comparison with conventional padding. Cellulose, 27, pp.4091-4107.
  • 20. Jokisch S, Scheibel T. 2017. Spider silk foam coating of fabric. Pure Appl Chem, 89: pp.1769–1776.
  • 21. Lappalainen T., Salminen K., Kinnunen K., Jarvinen M., Mira I., Anderson M. 2014. Foam Forming Revisited. Part II. Effect Of Surfactant on the Properties of Foam-Formed Paper Products. Nord. Pulp and Paper Research Journal, 29, pp.689-699.
  • 22.Gottberg J.M., Lappalainen T., Salminen K. 2017. Polyvinyl Alcohol as Foaming Agent in Foam Formed Paper. In Paper Conference and Trade Show; TAPPI: Minneapolis.
  • 23. Bunker D., Cecchini J., Hietaniemi M., Virtanen M., Torvinen K., Asikainen J., Salminen, K. 2017. Foam Forming Tecnology Folding Box Board Focused Developments. In Paper Conference and Trade Show, TAPPI: Minneapolis, pp.1802.
  • 24. Kentta E., Kumar V., Andersson P., Forsstrüm,U. 2021. A Novel Foam Coating Approach To Produce Abrasive Structures On Textiles. Autex Research Journal, 0031, pp.1-8.2021.
  • 25. Hou Q, Wang X. 2018. Effect of fiber surface characteristics on foam properties. Cellulose, 25: pp.3315-3325.
  • 26. Goods S. H., Neuschwanger C. L., Henderson C. C., Skala D. 1998. Mechanical properties of CRETE, a polyurethane foam. Journal of Applied Polymer Science, vol.68, pp.1045-1055.
  • 27. Mouna S., Walid C., Sondes G., Riadh Z., Visileanu E. and Slah M. 2022. The effect of calcium carbonate content and particle size on the mechanical and morphological properties of a PVC foamed layer used for coated textiles. Industria Textila, vol.73, no.5, pp. 580-586.
  • 28. Chang BP, Mohanty AK, Misra M. 2020. Studies on durability of sustainable biobased composites: a review. Royal Society of Chemistry Advances ,10(31), pp.17955–17999.
  • 29. Bryant GM. 2016. Dynamic sorption of semistable foams by fabrics: Part I: Implications for textile foam application processes. Textile Research Journal, 54, pp.217–226
  • 30. Chen X., Sang X., Zhang Q. 2015. Preparation and characterization of polyurethane-imide/ kaolinite nanocomposite foams. Royal Society of Chemistry Advances., pp. 53211–53219
  • 31. Angel S, Ana MB, Ignacio G, et al. 2017. The Role of microstructure on the mechanical properties of polyurethane foams containing thermoregulating microcapsules [J]. Polymer Testing, pp. 274-282.
  • 32. Xiang W., Filpponen I., Saharinen E., Lappalainen T., Salminen K., Rojas O.J. 2018. Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause- effect relations. ACS Sustainable Chemistry &Engineering, 6, pp.14423-14431.
  • 33. Thirumal M., Khastgir D., Singha N.K., Marjunath B.S., Naik Y.P 2008. Effect of foam density on the properties of water blown rigid polyurethane foam. Journal of Applied Polymer Science, vol.108, pp.1810-1817.
  • 34. Zheng XG, Li SM, Zeng Z, et al. 2015. Effect of apparent density on mechanical properties of polyurethane foam curing materials[J]. Chinese Railway Science, 36 (3), pp. 12-16
  • 35. Linul E, Marsavina L, Voiconi T, et al. 2013. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression[J]. Journal of Physics, 451, pp. 214-2.
  • 36. Zhang J, Tu W, Dai Z. 2012. Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers. Progress in Organic Coatings, 75(4), pp.579–583
  • 37. Asefnejad A., Khorasani M., Behnamghader A., Farsadzadein B., Bonakdar S. 2011. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. The International Journal of Nanomedicine, 6, pp. 2375
  • 38. Asker G. and Balcı O. 2022.Investigation of The Effect of Raising and finishing process on the phycysical performance of 3-thread fleece fabric. Tekstil ve Konfeksiyon, 32(3), pp.183-192.
  • 39. Szkudlarek J. and Snycerski M. 2017. Structural modelling of blackout fabrics patterned by weave used as a curtain in interior public spaces. Fibres And Textiles in Eastern Europe, vol.25,4(124); pp.45-49.
  • 40. Ye X. and Chen D. 2018. Thermal insulation coatings in energy saving. Energy-Efficient Approaches in Industrial Applications, pp.1-17.
  • 41. Militky J., Travnickova M., and Bajzik V. 1999. Air permeability and light transmission of weaves. International Journal of Clothing Science and Technology, 11(3), pp. 116- 125.
  • 42. Demirbağ Genç S, Alay Aksoy S. 2022. Development of temperature and pH-responsive smart cotton fabrics by P(NIPAM-co-MAM) copolymer finishing. Tekstil ve Konfeksiyon, 32(3), pp.193-207.
  • 43. Margolis J. 1958. The kaolin clotting time: a rapid one-stage method for diagnosis of coagulation defects. Journal of Clinical Pathology, 11, pp. 406–409.
Year 2024, Volume: 34 Issue: 3, 261 - 275, 30.09.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1313835

Abstract

References

  • 1. Bulut Y, Sular V. 2008. General properties and performance pests of fabrics produced by coating and lamination techniques. Journal of Textile and Engineering, 15(70), 5-16.
  • 2.Sen A. K. 2007. Coated Textiles-Principles and Applications, 2nd edn. CRC Press, Boca Raton, FL, USA, pp. 94-95.
  • 3.Kinnunen-Raudaskoski K., Hjelt T., Kenttä E., Forsström U. 2014. Thin coatings by foam coating. Tappi Journal, 13(7), 9-19.
  • 4.Kenttä, E., Koskela, H., Paunonen, S., Kinnunen Raudaskoski, K., Hjelt, T. 2016. Functional surfaces produced by foam coating. TAPPI J.,15(8), pp.515-521.
  • 5.Kumar PS, Yaashikaa PR. 2018. Sustainable dyeing techniques, Sustainable innovations in textile chemical processes. Springer, Singapore, pp 1–29.
  • 6.Song MS, Hou JB, Lu YH, Lin J, Cheng DH. 2013. Performance of foam and application in foam finishing of textile, 3rd International Conference on Textile Engineering and Materials, vol 821–822, pp 661–664.
  • 7.Rather L.J, Jameel S, Dar OA, Ganie SA, Bhat KA, Mohammad F. 2019. Advances in the sustainable technologies for water conservation in textile industries., Water in Textiles and Fashion. Woodhead Publishing, Sawston, pp 175–194
  • 8.Van der Walt G H J, Van Rensburg N J J. 1986. Low-liquor dyeing and finishing. Textile Progress, 14, pp.1–50
  • 9. Chen S, Wang C, Fei L, Liu H. 2017. A novel strategy for realising environmentally friendly pigment foam dyeing using polyoxyethylene ether surfactant. Color Technol, 133, pp.253–261.
  • 10. Gopalakrishnan M, Punitha V, Saravanan D. 2019. Water conservation in textile wet processing. Water in Textiles and Fashion, Woodhead Publishing, Sawston, pp 135–153.
  • 11. Hou Q, Wang X. 2017. The effect of PVA foaming characteristics on foam forming. Cellulose, 24, pp.4939–4948.
  • 12. Bhavsar PS, Zoccola M, Patrucco A, Montarsolo A, Mossotti R, Giansetti M, Rovero G, Maier SS, Muresan A, Tonin C. 2017. Superheated water hydrolyzed keratin: a new application as a foaming agent in foam dyeing of cotton and wool fabrics. ACS Sustain Chem Eng, 5, pp.9150–9159.
  • 13. Li K, Zhang, JF, Li QJ. 2011. Study on foaming properties of sodium dodecyl sulfate for textile foam dyeing and finishing. Advanced Materials Research. Trans Tech Publication, vol 332–334, pp 1515–1519
  • 14. Gregorian RS, Namboodri CG, Young RE, Baitinger WF. 1983. Foam application of phosphonium salt flame retardants. Textile Research Journal, 53, pp.148–152
  • 15. Ashrafi, F., Lavasani, M.R. 2019. Improvement of the mechanical and thermal properties of polyester nonwoven fabrics by PTFE coating. Turkish Journal of Chemistry, 43: pp.760-765.
  • 16. Wadsworth LC, Wey PS. 1988. Effects of differential foam application of durable press and fluorochemical finishes to cotton fabric. Journal of Industrial Textiles, 17, pp.152–166
  • 17. Yang CQ, Perenich TA, Fateley WG. 1989. Studies of foam finished cotton fabrics using FT-IR photoacoustic spectroscopy. Textile Research Journal, 59, pp.562–568.
  • 18. Liu Y, Xin JH, Choi CH. 2012. Cotton fabrics with single-faced superhydrophobicity. Langmuir, 28, pp.17426–17434
  • 19. Muhammad M.and Shaheen S. 2020. Development of sustainable and cost efficient textile foam-finishing and its comparison with conventional padding. Cellulose, 27, pp.4091-4107.
  • 20. Jokisch S, Scheibel T. 2017. Spider silk foam coating of fabric. Pure Appl Chem, 89: pp.1769–1776.
  • 21. Lappalainen T., Salminen K., Kinnunen K., Jarvinen M., Mira I., Anderson M. 2014. Foam Forming Revisited. Part II. Effect Of Surfactant on the Properties of Foam-Formed Paper Products. Nord. Pulp and Paper Research Journal, 29, pp.689-699.
  • 22.Gottberg J.M., Lappalainen T., Salminen K. 2017. Polyvinyl Alcohol as Foaming Agent in Foam Formed Paper. In Paper Conference and Trade Show; TAPPI: Minneapolis.
  • 23. Bunker D., Cecchini J., Hietaniemi M., Virtanen M., Torvinen K., Asikainen J., Salminen, K. 2017. Foam Forming Tecnology Folding Box Board Focused Developments. In Paper Conference and Trade Show, TAPPI: Minneapolis, pp.1802.
  • 24. Kentta E., Kumar V., Andersson P., Forsstrüm,U. 2021. A Novel Foam Coating Approach To Produce Abrasive Structures On Textiles. Autex Research Journal, 0031, pp.1-8.2021.
  • 25. Hou Q, Wang X. 2018. Effect of fiber surface characteristics on foam properties. Cellulose, 25: pp.3315-3325.
  • 26. Goods S. H., Neuschwanger C. L., Henderson C. C., Skala D. 1998. Mechanical properties of CRETE, a polyurethane foam. Journal of Applied Polymer Science, vol.68, pp.1045-1055.
  • 27. Mouna S., Walid C., Sondes G., Riadh Z., Visileanu E. and Slah M. 2022. The effect of calcium carbonate content and particle size on the mechanical and morphological properties of a PVC foamed layer used for coated textiles. Industria Textila, vol.73, no.5, pp. 580-586.
  • 28. Chang BP, Mohanty AK, Misra M. 2020. Studies on durability of sustainable biobased composites: a review. Royal Society of Chemistry Advances ,10(31), pp.17955–17999.
  • 29. Bryant GM. 2016. Dynamic sorption of semistable foams by fabrics: Part I: Implications for textile foam application processes. Textile Research Journal, 54, pp.217–226
  • 30. Chen X., Sang X., Zhang Q. 2015. Preparation and characterization of polyurethane-imide/ kaolinite nanocomposite foams. Royal Society of Chemistry Advances., pp. 53211–53219
  • 31. Angel S, Ana MB, Ignacio G, et al. 2017. The Role of microstructure on the mechanical properties of polyurethane foams containing thermoregulating microcapsules [J]. Polymer Testing, pp. 274-282.
  • 32. Xiang W., Filpponen I., Saharinen E., Lappalainen T., Salminen K., Rojas O.J. 2018. Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause- effect relations. ACS Sustainable Chemistry &Engineering, 6, pp.14423-14431.
  • 33. Thirumal M., Khastgir D., Singha N.K., Marjunath B.S., Naik Y.P 2008. Effect of foam density on the properties of water blown rigid polyurethane foam. Journal of Applied Polymer Science, vol.108, pp.1810-1817.
  • 34. Zheng XG, Li SM, Zeng Z, et al. 2015. Effect of apparent density on mechanical properties of polyurethane foam curing materials[J]. Chinese Railway Science, 36 (3), pp. 12-16
  • 35. Linul E, Marsavina L, Voiconi T, et al. 2013. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression[J]. Journal of Physics, 451, pp. 214-2.
  • 36. Zhang J, Tu W, Dai Z. 2012. Synthesis and characterization of transparent and high impact resistance polyurethane coatings based on polyester polyols and isocyanate trimers. Progress in Organic Coatings, 75(4), pp.579–583
  • 37. Asefnejad A., Khorasani M., Behnamghader A., Farsadzadein B., Bonakdar S. 2011. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. The International Journal of Nanomedicine, 6, pp. 2375
  • 38. Asker G. and Balcı O. 2022.Investigation of The Effect of Raising and finishing process on the phycysical performance of 3-thread fleece fabric. Tekstil ve Konfeksiyon, 32(3), pp.183-192.
  • 39. Szkudlarek J. and Snycerski M. 2017. Structural modelling of blackout fabrics patterned by weave used as a curtain in interior public spaces. Fibres And Textiles in Eastern Europe, vol.25,4(124); pp.45-49.
  • 40. Ye X. and Chen D. 2018. Thermal insulation coatings in energy saving. Energy-Efficient Approaches in Industrial Applications, pp.1-17.
  • 41. Militky J., Travnickova M., and Bajzik V. 1999. Air permeability and light transmission of weaves. International Journal of Clothing Science and Technology, 11(3), pp. 116- 125.
  • 42. Demirbağ Genç S, Alay Aksoy S. 2022. Development of temperature and pH-responsive smart cotton fabrics by P(NIPAM-co-MAM) copolymer finishing. Tekstil ve Konfeksiyon, 32(3), pp.193-207.
  • 43. Margolis J. 1958. The kaolin clotting time: a rapid one-stage method for diagnosis of coagulation defects. Journal of Clinical Pathology, 11, pp. 406–409.
There are 43 citations in total.

Details

Primary Language English
Subjects Textile Technology
Journal Section Articles
Authors

Aslıhan Koruyucu 0000-0002-8443-5188

Gözde Kartal This is me 0009-0009-3868-7147

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date June 13, 2023
Acceptance Date May 22, 2024
Published in Issue Year 2024 Volume: 34 Issue: 3

Cite

APA Koruyucu, A., & Kartal, G. (2024). Improvement of Mechanical And Light Transmittance Properties of PU Foam Coated Curtain Fabrics. Textile and Apparel, 34(3), 261-275. https://doi.org/10.32710/tekstilvekonfeksiyon.1313835

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.