Research Article
BibTex RIS Cite

Measuring Digital Lean Success: A Framework Using Core Process Metrics for Apparel Manufacturing

Year 2025, Volume: 35 Issue: 3, 196 - 209

Abstract

This study investigates the impact of digitalization on Lean manufacturing within the apparel industry, emphasizing the integration of key performance metrics through technologies such as the Internet of Things (IoT), cloud computing, and data analytics. It highlights critical indicators including Lead Time, First Time Yield, Overall Equipment Effectiveness (OEE), On-Time Delivery Efficiency, and Total Cost of Product, showcasing their increasing relevance in a digital context. The research demonstrates that real-time data collection and analysis empower manufacturers to make data-driven decisions, improve operational visibility, and foster continuous improvement. Findings reveal that the integration of digital tools with Lean practices can lead to a reduction in lead times of up to 20%, a decrease in unit costs by 30%, and an enhancement of OEE by 35%. Additionally, companies report improvements in on-time delivery ranging from 10% to over 30% and increases in First Pass Yield between 20% and 50%. Ultimately, leveraging these metrics within a digital Lean framework promotes waste reduction, enhances product quality, and increases agility in responding to market challenges.

Ethical Statement

The research related to human use has been complied with all the relevant national regulations, institutional policies and in accordance with the tenets of the Helsinki Declaration, and has been approved by the author's institutional review board or equivalent committee.

Supporting Institution

Istanbul Technical University Scientific Research Project Unit

Project Number

project MDK-2022-44123.

Thanks

The authors gratefully acknowledge the financial support provided by the Istanbul Technical University Scientific Research Project Unit under project MDK-2022-44123. We extend our sincere appreciation to ITM Tech Soft Company for their invaluable support and for providing the essential facilities that made this research possible.

References

  • 1. Gupta, A., Misra, S. M., Garcia, C., & Ugalde, M. (2017, August 21). Utilizing lean principles to improve immunization administration efficiency in a pediatric mobile clinic program. Pediatric Quality & Safety, 2(5), e037. https://doi.org/10.1097/pq9.0000000000000037
  • 2. Atti, G. (2019, April 24). Lean management. In M. Sartor & G. Orzes (Eds.), Quality management: Tools, methods, and standards (pp. 129–151). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78769-801-7201910099
  • 3. Bonada, F., Echeverria, L., Domingo, X., & Anzaldi-Varas, G. (2020). AI for improving the overall equipment efficiency in manufacturing industry. IntechOpen. https://doi.org/10.5772/intechopen.89967
  • 4. Skenderi, G., Joppi, C., Denitto, M., & Cristani, M. (2022). On the use of learning-based forecasting methods for ameliorating fashion business processes: A position paper. arXiv. https://doi.org/10.48550/arxiv.2211.04798
  • 5. Jana, P., & Tiwari, M. (2021). Lean management in apparel manufacturing. In The Textile Institute Book Series (pp. 323–348). Elsevier. https://doi.org/10.1016/B978-0-12-819426-3.00014-X
  • 6. Begum, S., Akash, M. A. S., Khan, M., & Bhuiyan, M. (2024). A framework for Lean manufacturing implementation in the textile industry: A research study. Global Mainstream Journal, 1(4), 17–31. https://doi.org/10.62304/ijse.v1i04.181
  • 7. Romero, D., Gaiardelli, P., Powell, D., Wuest, T., & Thürer, M. (2018). Digital Lean Cyber-Physical Production Systems: The emergence of Digital Lean Manufacturing and the significance of digital waste. In IFIP International Conference on Advances in Production Management Systems (pp. 11–20). Springer. https://doi.org/10.1007/978-3-319-99704-9_2
  • 8. Xiao, Y. (2022). Effect and influencing factors of digital transformation of manufacturing industry. Advances in Economics, Business and Management Research, 656, 345–349. Atlantis Press. https://doi.org/10.2991/aebmr.k.220405.072
  • 9. JJeong, Y., Canessa, G., Flores-García, E., Agrawal, T. K., & Wiktorsson, M. (2022, January 1). An optimization model with stochastic variables for flexible production logistics planning. arXiv. https://doi.org/10.48550/arxiv.2203.17033
  • 10. Shang, Z., & Zhang, L. (2022). The sustainable digitalization in the manufacturing industry: A bibliometric analysis and research trend. Journal of Engineering, 2022, Article 1451705. https://doi.org/10.1155/2022/1451705
  • 11. Bain & Company, Inc. (2019). Digital lean: A guide to manufacturing excellence. https://www.bain.com/contentassets/47b06ba77050462caa1aa70050b37c5a/digital-lean-playbook_v5_final.pdf.
  • 12. Emiliani, M. (2006, April 1). Origins of lean management in America. Journal of Management History, 12(2), 167–184. https://doi.org/10.1108/13552520610654069
  • 13. Krafcik, J. F. (1988). Triumph of the lean production system. Sloan Management Review, 30(1), 41–52.
  • 14. Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world. MacMillan/Rawson Associates.
  • 15. Safra, I., & Ghachem, K. (2021, March 5). Enhancement of textile supply chain performance through optimal capacity planning. IntechOpen. https://doi.org/10.5772/intechopen.96292
  • 16. Womack, J. P., & Jones, D. T. (1996). Lean thinking. Simon & Schuster.
  • 17. Liker, J. K. (2004). The Toyota way: 14 management principles from the world’s greatest manufacturer. McGraw-Hill.
  • 18. Kundu, G. K. (2015, February 1). Lean wastes: Classifications from different industry perspectives. ICTACT Journal on Management Studies, 1(1), 39–42. https://doi.org/10.21917/ijms.2015.0007
  • 19. Sundaram, S., & Zeid, A. (2023). Artificial intelligence-based smart quality inspection for manufacturing. Micromachines, 14(3), 570. https://doi.org/10.3390/mi14030570
  • 20. Cardoso, D., & Ferreira, L. (2020). Application of predictive maintenance concepts using artificial intelligence tools. Applied Sciences, 11(1), 18. https://doi.org/10.3390/app11010018
  • 21. Eswaramurthi, K. (2013). Improvement of manufacturing performance measurement system and evaluation of overall resource effectiveness. American Journal of Applied Sciences, 10(2), 131–138. https://doi.org/10.3844/ajassp.2013.131.138
  • 22. Bhattacharjee, A., Roy, S., Kundu, S., Tiwary, M., & Chakraborty, R. (2019). An analytical approach to measure OEE for blast furnaces. Ironmaking & Steelmaking, 47(5), 540–548. https://doi.org/10.1080/03019233.2018.1554348
  • 23. Koç, B., & Eryürük, S. H. (2025). Optimizing sewing line balancing in apparel manufacturing through digitalization. Fibres & Textiles in Eastern Europe, 33(1), 10–26. https://doi.org/10.2478/ftee-2025-0002
  • 24. Prasad, M. M., Dhiyaneswari, J. M., Jamaan, J. R., Mythreyan, S., & Sutharsan, S. M. (2020). A framework for lean manufacturing implementation in Indian textile industry. Materials Today: Proceedings, 33, 2986–2991. https://doi.org/10.1016/j.matpr.2020.02.979
  • 25. Hasan, M., Shanta, M. R., Shams, A. A., Rahman, S., Elahi, S., & Islam, M. (2019). Advantages of lean techniques application in apparel industry: Case study on knit jacket. Journal of Textile Engineering & Fashion Technology, 5(5). https://doi.org/10.15406/jteft.2019.05.00210
  • 26. Pitta, D. A., & Scherr, B. G. (2009, April 17). The product strategy for seasonal products. Journal of Product & Brand Management, 18(2), 152–153. https://doi.org/10.1108/10610420910949059
  • 27. Zou, J., Chang, Q., Arinez, J., Xiao, G., & Lei, Y. (2017, March 16). Dynamic production system diagnosis and prognosis using model-based data-driven method. Expert Systems with Applications, 80, 200–209. https://doi.org/10.1016/j.eswa.2017.03.025
  • 28. Islam, A., Irfan, M., Mohiuddin, K., & Al-Kabashi, H. (2013, November 1). Cloud: The global transformation. Proceedings of the 2013 International Conference on Cloud and Ubiquitous Computing and Emerging Technologies (CUBE). https://doi.org/10.1109/cube.2013.21
  • 29. Bukchin, J., & Rubinovitz, J. (2003, January 1). A weighted approach for assembly line design with station paralleling and equipment selection. IIE Transactions, 35(1), 73–85. https://doi.org/10.1080/07408170304429
  • 30. Niemi, T., Gallay, O., & Hameri, A. (2020, May 23). Technical note: Mean lead‐time as a real‐time key performance indicator. Decision Sciences, 52(5), 1242–1256. https://doi.org/10.1111/deci.12450
  • 31. Bashar, A., & Hasin, M. A. A. (2018). Lean manufacturing awareness and its implementation status in the apparel industry in Bangladesh. International Journal of Lean Enterprise Research, 2(3), 202. https://doi.org/10.1504/ijler.2018.093607
  • 32. Suresh, M., Yuvaprasanth, R., Nathan, R., & Amarnath, K. (2020, October 1). Employees stress level assessment: A case of apparel industry. IOP Conference Series: Materials Science and Engineering, 954(1), 012018. https://doi.org/10.1088/1757-899X/954/1/012018
  • 33. Garg, C. P. (2018, July 2). Implementation of lean tools in apparel industry to improve productivity and quality. Current Trends in Fashion Technology & Textile Engineering, 4(1). https://doi.org/10.19080/CTFTTE.2018.04.555628
  • 34. Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013, October 1). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38–41. https://doi.org/10.1016/j.mfglet.2013.09.005
  • 35. Costa, S. E. G. D., & Lima, E. P. D. (2003, June 25). Uses and misuses of the ‘overall equipment effectiveness’ for production management. Proceedings of the IEEE International Engineering Management Conference. https://doi.org/10.1109/IEMC.2002.1038543
  • 36. Tsai, W., & Su, C. (2022, October 26). Digital transformation of business model innovation. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1017750
  • 37. Urban, T. L. (2008, May 5). Establishing delivery guarantee policies. European Journal of Operational Research, 196(3), 959–967. https://doi.org/10.1016/j.ejor.2008.04.030
  • 38. Kaplan, R. S. (1994, May 1). Devising a balanced scorecard matched to business strategy. Planning Review, 22(5), 15–48. https://doi.org/10.1108/eb054476
  • 39. Bashar, A., & Hasin, M. A. A. (2019). Lean implementation: The progress and the future challenges of apparel industry to achieve the manufacturing competitiveness. Journal of Mechanical Engineering, 48(1), 30–36. https://doi.org/10.3329/jme.v48i1.41092
  • 40. Bicheno, J., & Holweg, M. (2016). The lean toolbox: A handbook for lean transformation. Buckingham, England: PICSIE Books.
  • 41. King, R. E., & Moon, K. (2003, January 20). Quick response replenishment: A case study. Proceedings of the 1999 Winter Simulation Conference. https://doi.org/10.1109/WSC.1999.816863
  • 42. Purushothaman, M. B., Seadon, J., & Moore, D. (2020, April 17). Waste reduction using lean tools in a multicultural environment. Journal of Cleaner Production, 265, 121681. https://doi.org/10.1016/j.jclepro.2020.121681
  • 43. Gherghea, I. C., Bungău, C., & Negrău, D. C. (2019). Best practices to increase manufacturing productivity – Comparative study. MATEC Web of Conferences, 290, 07007. https://doi.org/10.1051/matecconf/201929007007
  • 44. Muchiri, P., & Pintelon, L. (2008, April 15). Performance measurement using overall equipment effectiveness (OEE): Literature review and practical application discussion. International Journal of Production Research, 46(13), 3517–3535. https://doi.org/10.1080/00207540601142645
  • 45. Akhtar, W., Watanabe, C., Tou, Y., & Neittaanmäki, P. (2022, December 5). A new perspective on the textile and apparel industry in the digital transformation era. Textiles, 2(4), 633–656. https://doi.org/10.3390/textiles2040037
  • 46. Salah, W., & Zaki, H. (2013). Product costing in lean manufacturing organizations. International Journal of Lean Thinking, 4(6), Egypt.
  • 47. Rahmanasari, D., Sutopo, W., & Rohani, J. M. (2021, March 1). Implementation of lean manufacturing process to reduce waste: A case study. IOP Conference Series: Materials Science and Engineering, 1096(1), 012006. https://doi.org/10.1088/1757- 899X/1096/1/012006
  • 48. Waltersmann, L., Kiemel, S., Stuhlsatz, J., Sauer, A., & Miehe, R. (2021, June 12). Artificial intelligence applications for increasing resource efficiency in manufacturing companies—A comprehensive review. Sustainability, 13(12), 6689. https://doi.org/10.3390/su13126689
  • 49. Koç, B., & Eryürük, S. H. (2024). The role of process monitoring devices and digital line balancing in achieving operational excellence in garment manufacturing. Journal of Textile Engineering & Fashion Technology, 10(5), 180–186. https://doi.org/10.15406/jteft.2024.10.00386
  • 50. Koç, B. (2025). Dikim işletmesinde yalın üretim ve sürdürülebilir yalın dijital model tasarımı (Unpublished PhD thesis). Istanbul Technical University, Faculty of Textile Engineering.

Year 2025, Volume: 35 Issue: 3, 196 - 209

Abstract

Project Number

project MDK-2022-44123.

References

  • 1. Gupta, A., Misra, S. M., Garcia, C., & Ugalde, M. (2017, August 21). Utilizing lean principles to improve immunization administration efficiency in a pediatric mobile clinic program. Pediatric Quality & Safety, 2(5), e037. https://doi.org/10.1097/pq9.0000000000000037
  • 2. Atti, G. (2019, April 24). Lean management. In M. Sartor & G. Orzes (Eds.), Quality management: Tools, methods, and standards (pp. 129–151). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78769-801-7201910099
  • 3. Bonada, F., Echeverria, L., Domingo, X., & Anzaldi-Varas, G. (2020). AI for improving the overall equipment efficiency in manufacturing industry. IntechOpen. https://doi.org/10.5772/intechopen.89967
  • 4. Skenderi, G., Joppi, C., Denitto, M., & Cristani, M. (2022). On the use of learning-based forecasting methods for ameliorating fashion business processes: A position paper. arXiv. https://doi.org/10.48550/arxiv.2211.04798
  • 5. Jana, P., & Tiwari, M. (2021). Lean management in apparel manufacturing. In The Textile Institute Book Series (pp. 323–348). Elsevier. https://doi.org/10.1016/B978-0-12-819426-3.00014-X
  • 6. Begum, S., Akash, M. A. S., Khan, M., & Bhuiyan, M. (2024). A framework for Lean manufacturing implementation in the textile industry: A research study. Global Mainstream Journal, 1(4), 17–31. https://doi.org/10.62304/ijse.v1i04.181
  • 7. Romero, D., Gaiardelli, P., Powell, D., Wuest, T., & Thürer, M. (2018). Digital Lean Cyber-Physical Production Systems: The emergence of Digital Lean Manufacturing and the significance of digital waste. In IFIP International Conference on Advances in Production Management Systems (pp. 11–20). Springer. https://doi.org/10.1007/978-3-319-99704-9_2
  • 8. Xiao, Y. (2022). Effect and influencing factors of digital transformation of manufacturing industry. Advances in Economics, Business and Management Research, 656, 345–349. Atlantis Press. https://doi.org/10.2991/aebmr.k.220405.072
  • 9. JJeong, Y., Canessa, G., Flores-García, E., Agrawal, T. K., & Wiktorsson, M. (2022, January 1). An optimization model with stochastic variables for flexible production logistics planning. arXiv. https://doi.org/10.48550/arxiv.2203.17033
  • 10. Shang, Z., & Zhang, L. (2022). The sustainable digitalization in the manufacturing industry: A bibliometric analysis and research trend. Journal of Engineering, 2022, Article 1451705. https://doi.org/10.1155/2022/1451705
  • 11. Bain & Company, Inc. (2019). Digital lean: A guide to manufacturing excellence. https://www.bain.com/contentassets/47b06ba77050462caa1aa70050b37c5a/digital-lean-playbook_v5_final.pdf.
  • 12. Emiliani, M. (2006, April 1). Origins of lean management in America. Journal of Management History, 12(2), 167–184. https://doi.org/10.1108/13552520610654069
  • 13. Krafcik, J. F. (1988). Triumph of the lean production system. Sloan Management Review, 30(1), 41–52.
  • 14. Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world. MacMillan/Rawson Associates.
  • 15. Safra, I., & Ghachem, K. (2021, March 5). Enhancement of textile supply chain performance through optimal capacity planning. IntechOpen. https://doi.org/10.5772/intechopen.96292
  • 16. Womack, J. P., & Jones, D. T. (1996). Lean thinking. Simon & Schuster.
  • 17. Liker, J. K. (2004). The Toyota way: 14 management principles from the world’s greatest manufacturer. McGraw-Hill.
  • 18. Kundu, G. K. (2015, February 1). Lean wastes: Classifications from different industry perspectives. ICTACT Journal on Management Studies, 1(1), 39–42. https://doi.org/10.21917/ijms.2015.0007
  • 19. Sundaram, S., & Zeid, A. (2023). Artificial intelligence-based smart quality inspection for manufacturing. Micromachines, 14(3), 570. https://doi.org/10.3390/mi14030570
  • 20. Cardoso, D., & Ferreira, L. (2020). Application of predictive maintenance concepts using artificial intelligence tools. Applied Sciences, 11(1), 18. https://doi.org/10.3390/app11010018
  • 21. Eswaramurthi, K. (2013). Improvement of manufacturing performance measurement system and evaluation of overall resource effectiveness. American Journal of Applied Sciences, 10(2), 131–138. https://doi.org/10.3844/ajassp.2013.131.138
  • 22. Bhattacharjee, A., Roy, S., Kundu, S., Tiwary, M., & Chakraborty, R. (2019). An analytical approach to measure OEE for blast furnaces. Ironmaking & Steelmaking, 47(5), 540–548. https://doi.org/10.1080/03019233.2018.1554348
  • 23. Koç, B., & Eryürük, S. H. (2025). Optimizing sewing line balancing in apparel manufacturing through digitalization. Fibres & Textiles in Eastern Europe, 33(1), 10–26. https://doi.org/10.2478/ftee-2025-0002
  • 24. Prasad, M. M., Dhiyaneswari, J. M., Jamaan, J. R., Mythreyan, S., & Sutharsan, S. M. (2020). A framework for lean manufacturing implementation in Indian textile industry. Materials Today: Proceedings, 33, 2986–2991. https://doi.org/10.1016/j.matpr.2020.02.979
  • 25. Hasan, M., Shanta, M. R., Shams, A. A., Rahman, S., Elahi, S., & Islam, M. (2019). Advantages of lean techniques application in apparel industry: Case study on knit jacket. Journal of Textile Engineering & Fashion Technology, 5(5). https://doi.org/10.15406/jteft.2019.05.00210
  • 26. Pitta, D. A., & Scherr, B. G. (2009, April 17). The product strategy for seasonal products. Journal of Product & Brand Management, 18(2), 152–153. https://doi.org/10.1108/10610420910949059
  • 27. Zou, J., Chang, Q., Arinez, J., Xiao, G., & Lei, Y. (2017, March 16). Dynamic production system diagnosis and prognosis using model-based data-driven method. Expert Systems with Applications, 80, 200–209. https://doi.org/10.1016/j.eswa.2017.03.025
  • 28. Islam, A., Irfan, M., Mohiuddin, K., & Al-Kabashi, H. (2013, November 1). Cloud: The global transformation. Proceedings of the 2013 International Conference on Cloud and Ubiquitous Computing and Emerging Technologies (CUBE). https://doi.org/10.1109/cube.2013.21
  • 29. Bukchin, J., & Rubinovitz, J. (2003, January 1). A weighted approach for assembly line design with station paralleling and equipment selection. IIE Transactions, 35(1), 73–85. https://doi.org/10.1080/07408170304429
  • 30. Niemi, T., Gallay, O., & Hameri, A. (2020, May 23). Technical note: Mean lead‐time as a real‐time key performance indicator. Decision Sciences, 52(5), 1242–1256. https://doi.org/10.1111/deci.12450
  • 31. Bashar, A., & Hasin, M. A. A. (2018). Lean manufacturing awareness and its implementation status in the apparel industry in Bangladesh. International Journal of Lean Enterprise Research, 2(3), 202. https://doi.org/10.1504/ijler.2018.093607
  • 32. Suresh, M., Yuvaprasanth, R., Nathan, R., & Amarnath, K. (2020, October 1). Employees stress level assessment: A case of apparel industry. IOP Conference Series: Materials Science and Engineering, 954(1), 012018. https://doi.org/10.1088/1757-899X/954/1/012018
  • 33. Garg, C. P. (2018, July 2). Implementation of lean tools in apparel industry to improve productivity and quality. Current Trends in Fashion Technology & Textile Engineering, 4(1). https://doi.org/10.19080/CTFTTE.2018.04.555628
  • 34. Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013, October 1). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38–41. https://doi.org/10.1016/j.mfglet.2013.09.005
  • 35. Costa, S. E. G. D., & Lima, E. P. D. (2003, June 25). Uses and misuses of the ‘overall equipment effectiveness’ for production management. Proceedings of the IEEE International Engineering Management Conference. https://doi.org/10.1109/IEMC.2002.1038543
  • 36. Tsai, W., & Su, C. (2022, October 26). Digital transformation of business model innovation. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.1017750
  • 37. Urban, T. L. (2008, May 5). Establishing delivery guarantee policies. European Journal of Operational Research, 196(3), 959–967. https://doi.org/10.1016/j.ejor.2008.04.030
  • 38. Kaplan, R. S. (1994, May 1). Devising a balanced scorecard matched to business strategy. Planning Review, 22(5), 15–48. https://doi.org/10.1108/eb054476
  • 39. Bashar, A., & Hasin, M. A. A. (2019). Lean implementation: The progress and the future challenges of apparel industry to achieve the manufacturing competitiveness. Journal of Mechanical Engineering, 48(1), 30–36. https://doi.org/10.3329/jme.v48i1.41092
  • 40. Bicheno, J., & Holweg, M. (2016). The lean toolbox: A handbook for lean transformation. Buckingham, England: PICSIE Books.
  • 41. King, R. E., & Moon, K. (2003, January 20). Quick response replenishment: A case study. Proceedings of the 1999 Winter Simulation Conference. https://doi.org/10.1109/WSC.1999.816863
  • 42. Purushothaman, M. B., Seadon, J., & Moore, D. (2020, April 17). Waste reduction using lean tools in a multicultural environment. Journal of Cleaner Production, 265, 121681. https://doi.org/10.1016/j.jclepro.2020.121681
  • 43. Gherghea, I. C., Bungău, C., & Negrău, D. C. (2019). Best practices to increase manufacturing productivity – Comparative study. MATEC Web of Conferences, 290, 07007. https://doi.org/10.1051/matecconf/201929007007
  • 44. Muchiri, P., & Pintelon, L. (2008, April 15). Performance measurement using overall equipment effectiveness (OEE): Literature review and practical application discussion. International Journal of Production Research, 46(13), 3517–3535. https://doi.org/10.1080/00207540601142645
  • 45. Akhtar, W., Watanabe, C., Tou, Y., & Neittaanmäki, P. (2022, December 5). A new perspective on the textile and apparel industry in the digital transformation era. Textiles, 2(4), 633–656. https://doi.org/10.3390/textiles2040037
  • 46. Salah, W., & Zaki, H. (2013). Product costing in lean manufacturing organizations. International Journal of Lean Thinking, 4(6), Egypt.
  • 47. Rahmanasari, D., Sutopo, W., & Rohani, J. M. (2021, March 1). Implementation of lean manufacturing process to reduce waste: A case study. IOP Conference Series: Materials Science and Engineering, 1096(1), 012006. https://doi.org/10.1088/1757- 899X/1096/1/012006
  • 48. Waltersmann, L., Kiemel, S., Stuhlsatz, J., Sauer, A., & Miehe, R. (2021, June 12). Artificial intelligence applications for increasing resource efficiency in manufacturing companies—A comprehensive review. Sustainability, 13(12), 6689. https://doi.org/10.3390/su13126689
  • 49. Koç, B., & Eryürük, S. H. (2024). The role of process monitoring devices and digital line balancing in achieving operational excellence in garment manufacturing. Journal of Textile Engineering & Fashion Technology, 10(5), 180–186. https://doi.org/10.15406/jteft.2024.10.00386
  • 50. Koç, B. (2025). Dikim işletmesinde yalın üretim ve sürdürülebilir yalın dijital model tasarımı (Unpublished PhD thesis). Istanbul Technical University, Faculty of Textile Engineering.
There are 50 citations in total.

Details

Primary Language English
Subjects Planning Techniques, Textile Science
Journal Section Articles
Authors

Bülent Koç 0000-0001-8581-5230

Selin Hanife Eryürük 0000-0002-9576-3101

Project Number project MDK-2022-44123.
Early Pub Date October 1, 2025
Publication Date October 3, 2025
Submission Date October 28, 2024
Acceptance Date September 3, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Koç, B., & Eryürük, S. H. (2025). Measuring Digital Lean Success: A Framework Using Core Process Metrics for Apparel Manufacturing. Textile and Apparel, 35(3), 196-209. https://doi.org/10.32710/tekstilvekonfeksiyon.1575234

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.