Research Article
BibTex RIS Cite

Overshoot Avoiding Control for Rigid Robots

Year 2024, Volume: 4 Issue: 2, 57 - 62, 24.06.2024
https://doi.org/10.5152/tepes.2024.24005
https://izlik.org/JA84UC89GD

Abstract

Control of robots to ensure safe operation has been a current research topic ever since the manipulators were utilized in industrial applications. Humans and robots work together collaboratively more often these days. Providing a safer operation has become an issue that requires more attention. In this paper, the application of a control algorithm that combines a proportional plus derivative controller with an overshoot avoidance trajectory tracking mechanism is introduced. The operation of the algorithm is illustrated on a two-link planar manipulator. The performance is shown both by means of graphs of end effector trajectories and mean absolute error metric. The results indicate that depending on the gain of the proportional plus derivative controller, desired trajectories can be followed very closely and the error becomes negligibly small.

References

  • 1. F. Massaoudi, D. Elleuch, and T. Damak, “Robust control for a two dof robot manipulator,” J. Electr. Comput. Eng., vol. 2019, pp. 1–11, 2019.
  • 2. B. Mahboub, and D. Stephen, “A two-link robot manipulator: Simulation and control design,” Int. J. Robot. Eng., vol. 5, no. 2, pp. 1-17, 2020.
  • 3. P. N. Paraskevopoulos, and A. S. Tsirikos, and X. Koutsoukos, “Nonlinear Decoupling Control For a Robot Manipulator, 1998.
  • 4. M. Wang, J. Luo, and U. Walter, “A non-linear model predictive controller with obstacle avoidance for a space robot,” Adv. Space Res., vol. 57, no. 8, pp. 1737–1746, 2016.
  • 5. K. Merckaert, B. Convens, C. JuWu, A. Roncone, M.M. Nicotra, and B. Vanderborght, “Real-time motion control of robotic manipulators for safe human–robot coexistence,” Robot Comput Integr Manuf, vol. 73, pp. 1-16, 2022.
  • 6. A. De Luca, C. Manes, and F. Nicolo, “A task space decoupling approach to hybrid control of manipulators,” IFAC Proceedings Volumes, vol. 21, no. 16, 157–162, 1988.
  • 7. S. Zhang, R. Wang, Y. Tian, J. Yao, and Y. Zhao, “Motion analysis of the fire-fighting robot and trajectory correction strategy,” Simul. Modell. Pract. Theor., vol. 125, pp. 1-17, 2023.
  • 8. M. Adinehvand, E. Asadi, C. Y. Lai, H. Khayyam, and R. Hoseinnezhad, “Design and adaptive control of a kinematically redundant robot with enhanced trajectory tracking for climbing in tight spaces,” Mech. Mach. Theor., vol. 177, no. 5, pp. 1-16, 2022.
  • 9. J. F. Peza-Solis, G. Silva-Navarro, O. A. Garcia-Perez, and L. G. Trujillo-Franco, “Trajectory tracking of a single flexible-link robot using a modal cascaded-type control,” Appl. Math. Modell., vol. 104, pp. 531–547, 2022.
  • 10. L. Roveda, N. Pedrocchi, M. Beschi, and L. Molinati Tosatti, “High-accuracy robotized industrial assembly task control schema with force overshoots avoidance,” Control Eng. Pract., vol. 71, pp. 142–153, 2018.
  • 11. S. Chávez-Vázquez, J. E. Lavín-Delgado, J. F. Gómez-Aguilar, J. R. Razo-Hernández, S. Etemad, and S. Rezapour, “Trajectory tracking of Stanford robot manipulator by fractional-order sliding mode control,” Appl. Math. Modell., vol. 120, pp. 436–462, 2023.
  • 12. R. Miranda-Colorado, “Observer-based proportional integral derivative control for trajectory tracking of wheeled mobile robots with kinematic disturbances,” Appl. Math. Comput., vol. 432, no. 5, pp. 1-14, 2022.
  • 13. Y. Zhou, H. Ríos, M. Mera, A. Polyakov, G. Zheng, and A. Dzul, “Trajectory tracking in unicycle mobile robots: A homogeneity–based control approach,” IFAC PapersOnLine, vol. 56, no. 2, pp. 54–59, 2023.
  • 14. T. Ding, Y. Zhang, G. Ma, Z. Cao, X. Zhao, and B. Tao, “Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint,” Mechatronics, vol. 84, pp. 1-14, 2022.
  • 15. D. Shi, J. Zhang, Z. Sun, G. Shen, and Y. Xia, “Composite trajectory tracking control for robot manipulator with active disturbance rejection,” Control Eng. Pract., vol. 106, pp. 1-8, 2021.
  • 16. L. Li, W. Cao, H. Yang, and Q. Geng, “Trajectory tracking control for a wheel mobile robot on rough and uneven ground,” Mechatronics, vol. 83, pp. 1-9, 2022.
  • 17. K. Merckaert, B. Convens, M. M. Nicotra, and B. Vanderborght, “Realtime constraint-based planning and control of robotic manipulators for safe human–robot collaboration,” Robot. Comput. Integr. Manuf., vol. 87, pp. 1-16, 2024.
  • 18. B. C. Kuo, Automatic Control Systems. Prentice-Hall International Inc., 1991.
  • 19. Y. Denizhan, A Variable Structure Control Algorithm for Robotic Systems and a Learning Scheme for Load Adaptation. İstanbul, Turkey: Ph.D., Boğaziçi University, 1988.
  • 20. F. Özen, “Variable structure control of a manipulator with four degrees of freedom,” M.Sc. İstanbul, Turkey: Boğaziçi University, 1989.
  • 21. L. Sciavicco, and B. Siciliano, Modelling
There are 21 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Figen Özen 0000-0002-1759-0073

Submission Date February 21, 2024
Acceptance Date March 23, 2024
Publication Date June 24, 2024
DOI https://doi.org/10.5152/tepes.2024.24005
IZ https://izlik.org/JA84UC89GD
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

APA Özen, F. (2024). Overshoot Avoiding Control for Rigid Robots. Turkish Journal of Electrical Power and Energy Systems, 4(2), 57-62. https://doi.org/10.5152/tepes.2024.24005
AMA 1.Özen F. Overshoot Avoiding Control for Rigid Robots. TEPES. 2024;4(2):57-62. doi:10.5152/tepes.2024.24005
Chicago Özen, Figen. 2024. “Overshoot Avoiding Control for Rigid Robots”. Turkish Journal of Electrical Power and Energy Systems 4 (2): 57-62. https://doi.org/10.5152/tepes.2024.24005.
EndNote Özen F (June 1, 2024) Overshoot Avoiding Control for Rigid Robots. Turkish Journal of Electrical Power and Energy Systems 4 2 57–62.
IEEE [1]F. Özen, “Overshoot Avoiding Control for Rigid Robots”, TEPES, vol. 4, no. 2, pp. 57–62, June 2024, doi: 10.5152/tepes.2024.24005.
ISNAD Özen, Figen. “Overshoot Avoiding Control for Rigid Robots”. Turkish Journal of Electrical Power and Energy Systems 4/2 (June 1, 2024): 57-62. https://doi.org/10.5152/tepes.2024.24005.
JAMA 1.Özen F. Overshoot Avoiding Control for Rigid Robots. TEPES. 2024;4:57–62.
MLA Özen, Figen. “Overshoot Avoiding Control for Rigid Robots”. Turkish Journal of Electrical Power and Energy Systems, vol. 4, no. 2, June 2024, pp. 57-62, doi:10.5152/tepes.2024.24005.
Vancouver 1.Özen F. Overshoot Avoiding Control for Rigid Robots. TEPES [Internet]. 2024 June 1;4(2):57-62. Available from: https://izlik.org/JA84UC89GD