Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 2 Sayı: 1, 64 - 75, 29.01.2021

Öz

Kaynakça

  • Aktara, M. N., Das, S., Nayim, S., Sahoo, N. K., Beg, M., Jana, G. C., et al. (2019). A sensorial colorimetric detection method for Hg2+ and Cu2+ ions using single probe sensor based on 5-methyl-1, 3,4-thiadiazole-2-thiol stabilized gold nanoparticles and its application in real water sample analysis. Microchemical Journal, 147, 1163-1172. https://doi.org/10.1016/j.microc.2019.04.0
  • Aminu, A. and Oladepo, S. A. (2020). Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury (II) Ions. Arabian Journal for Science and Engineering, 1-11. https://doi.org/10.1007/s13369-020-05030-3
  • Balasurya, S., Syed, A., Thomas, A. M., Bahkali, A. H., Elgorban, A. M., Raju, L. L. and Khan, S. S. (2020). Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles. Journal of Molecular Liquids, 300, 112361. https://doi.org/10.1016/j.saa.2019.117712
  • Bhattacharjee, Y. and Chakraborty, A. (2014). Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg (II) detection in water with subnanomolar exactitude. ACS Sustainable Chemistry & Engineering, 2(9), 2149-2154. https://doi.org/10.1021/sc500339n
  • Chai, F., Wang, C., Wang, T., Li, L. and Su, Z. (2010). Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS applied materials & interfaces, 2(5), 1466-1470. https://doi.org/10.1021/am100107k
  • Davis, A. C., Calloway Jr., C. P. and Jones, B. T. (2007). Direct determination of cadmium in urine by tungsten-coil inductively coupled plasma atomic emission spectrometry using palladium as a permanent modifier. Talanta, 71(3), 1144–1149. https://doi.org/10.1016/j.talanta.2006.06.005
  • Du, J., Hu, X., Zhang, G., Wu, X. and Gong, D. (2018). Colorimetric detection of cadmium in water using L-cysteine functionalized gold–silver nanoparticles. Analytical Letters, 51(18), 2906-2919. https://doi.org/10.1080/00032719.2018.1455103
  • Garbarino, J. R., Hayes, H., Roth, D., Antweider, R., Brinton, T. I. and Taylor, H. (1995). Contaminants in the Mississippi River US Geological survey circular 1133. Virginia USA.
  • García Grajeda, B. A., Aguila, S. A., Peinado Guevara, H., Reynoso-Soto, E., Ochoa-Terán, A., Trujillo-Navarrete, B., et al. (2018). Colorimetric and rapid determination of Cr (III) ions in water samples using AuNPs modified with 11-mercaptoundecyl phosphonic acid: spectroscopic characterization and reaction mechanism. Inorganic and Nano-Metal Chemistry, 48(6), 275-285. https://doi.org/10.1080/24701556.2018.1503680
  • Huang, D., Liu, X., Lai, C., Qin, L., Zhang, C., Yi, H., et al. (2019). Colorimetric determination of mercury (II) using gold nanoparticles and double ligand exchange. Microchimica Acta, 186(1), 31. https://doi.org/10.1007/s00604-018-3126-6
  • Işıldak, Ö., Deligönül, N. and Özbek, O. (2019). A novel silver (I)-selective PVC membrane sensor and its potentiometric applications. Turkish Journal of Chemistry, 43(4), 1149-1158. https://doi.org/10.3906/kim-1812-29
  • Isildak, Ö. and Özbek, O. (2020). Silver (I)-selective PVC membrane potentiometric sensor based on 5, 10, 15, 20-tetra (4-pyridyl)-21H, 23H-porphine and potentiometric applications. Journal of Chemical Sciences, 132(1), 29. https://doi.org/10.1007/s12039-019-1734-2
  • Isildak, Ö. and Özbek, O. (2020). Application of potentiometric sensors in real samples. Critical Reviews in Analytical Chemistry, 1-14. https://doi.org/10.1080/10408347.2019.1711013
  • Isildak, Ö., Özbek, O. and Gürdere, M. B. (2020). Development of Chromium (III)-Selective Potentiometric Sensor by Using Synthesized Pyrazole Derivative as an Ionophore in PVC Matrix and Its Applications. Journal of Analysis and Testing, 4(4), 273-280. https://doi.org/10.1007/s41664-020-00147-8
  • Jabariyan, S. and Zanjanchi, M. A. (2019). Colorimetric detection of cadmium ions using modified silver nanoparticles. Applied Physics A, 125(12), 872. https://doi.org/10.1007/s00339-019-3167-7
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. and Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009
  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. and Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050-1074. https://doi.org/10.3762/bjnano.9.98
  • Kadhim, M. A., Naji, A. A. S., Khaleefah, L. S. and Salman, H. N. (2020). Evaluation of Some Minerals Content of Drinking and River Water in Iraq by AAS Method. Indian Journal of Forensic Medicine & Toxicology, 14(3), 1334-1339. https://doi.org/10.37506/ijfmt.v14i3
  • Kataria, R., Sethuraman, K., Vashisht, D., Vashisht, A., Mehta, S. K.. and Gupta, A. (2019). Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchemical Journal, 148, 299-305. https://doi.org/10.1021/ac5008688
  • Kobylinska, N., Kostenko, L., Khainakov, S. and Garcia-Granda, S. (2020). Advanced core-shell EDTA-functionalized magnetite nanoparticles for rapid and efficient magnetic solid phase extraction of heavy metals from water samples prior to the multi-element determination by ICP-OES. Microchimica Acta, 187(5). https://doi.org/10.1007/s00604-020-04231-9
  • Kotalova, I., Calabkova, K., Drabinova, S. and Heviankova, S. (2020, January). Contribution to the study of selected heavy metals in urban wastewaters using ICP-MS method. In IOP Conference Series: Earth and Environmental Science (Vol. 444, No. 1, p. 012028). IOP Publishing.
  • LeFauve, M. K. and Connaughton, V. P. (2017). Developmental exposure to heavy metals alters visually-guided behaviors in zebrafish. Current zoology, 63(2), 221-227. https://doi.org/10.1093/cz/zox017
  • Liu, Y., Deng, Y., Dong, H., Liu, K.. and He, N. (2017). Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Science China Chemistry, 60(3), 329-337. https://doi.org/10.1007/s11426-016-0253-2
  • Megarajan, S., Kanth, K. R. and Anbazhagan, V. (2020). Highly selective rapid colorimetric sensing of Pb2+ ion in water samples and paint based on metal induced aggregation of N-decanoyltromethamine capped gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118-485. https://doi.org/10.1016/j.saa.2020.118485
  • Mehta, V. N., Rohit, J. V. and Kailasa, S. K. (2016). Functionalization of silver nanoparticles with 5-sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn 2+ and Cd 2+ ions. New Journal of Chemistry, 40(5), 4566-4574. https://doi.org/10.1039/C5NJ03454J
  • Mousapour, K., Hajizadeh, S. and Farhadi, K. (2020). Colorimetric speciation analysis of chromium using 2-thiobarbituric acid capped silver nanoparticles. Analytical Methods, 12(19), 2484-2490. https://doi.org/10.1039/D0AY00160K
  • Özbek, O., Isildak, Ö., Gürdere, M. B. and Berkel, C. (2020). Cadmium (II)-selective potentiometric sensor based on synthesised (E)-2-benzylidenehydrazinecarbothioamide for the determination of Cd2+ in different environmental samples. International Journal of Environmental Analytical Chemistry, 1-16. https://doi.org/10.1080/03067319.2020.1817427
  • Özbek, O., Isildak, Ö. and Berkel, C. (2020). The use of porphyrins in potentiometric sensors as ionophores. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1-9. https://doi.org/10.1007/s10847-020-01004-y
  • Özbek, O., Işıldak, Ö., Yiğit, K. M. and Çetin, A. Atık Su Analizlerinde Potansiyometrik Sensörlerin Kullanımı. Türk Fen Ve Sağlık Dergisi, 1(2), 70-78.
  • Papageorgiou, S. K., Katsaros, F. K., Kouvelos, E. P., Nolan, J. W., Le Deit, H. and Kanellopoulos, N. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 137(3), 1765-1772. https://doi.org/10.1016/j.jhazmat.2006.05.017
  • Pueyo, M., Rauret, G., Lück, D., Yli-Halla, M., Muntau, H., Quevauviller, P. and López-Sánchez, J. F. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3(2), 243-250. https://doi.org/10.1039/b010235k
  • Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J. and Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals, 21(3), 321-332. https://doi.org/10.1007/s10534-007-9121-8
  • Ratnarathorn, N., Chailapakul, O. and Dungchai, W. (2015). Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Talanta, 132, 613-618. https://doi.org/10.1016/j.talanta.2014.10.024
  • Roto, R., Mellisani, B., Kuncaka, A., Mudasir, M. and Suratman, A. (2019). Colorimetric sensing of Pb2+ ion by using ag nanoparticles in the presence of dithizone. Chemosensors, 7(3), 28. https://doi.org/10.3390/chemosensors7030028 Sabela, M., Balme, S., Bechelany, M., Janot, J. M. and Bisetty, K. (2017). A review of gold and silver nanoparticle‐based colorimetric sensing assays. Advanced Engineering Materials, 19(12), 1700270. https://doi.org/10.1002/adem.201700270
  • Shrivas, K., Sahu, S., Patra, G. K., Jaiswal, N. K. and Shankar, R. (2016). Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Analytical Methods, 8(9), 2088-2096. https://doi.org/10.1039/C5AY03120F
  • Shrivas, K., Sahu, B., Deb, M. K., Thakur, S. S., Sahu, S., Kurrey, R., et al. (2019). Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchemical Journal, 150, 104156. https://doi.org/ 10.1016/j.microc.2019.104156.
  • Valko, M. M. H. C. M., Morris, H. and Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current medicinal chemistry, 12(10), 1161-1208.
  • Wan, Z., Xu, Z. and Wang, J. (2006). Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry. Analyst, 131(1), 141-147. https://doi.org/10.1039/B511829H
  • Wang, A. J., Guo, H., Zhang, M., Zhou, D. L., Wang, R. Z. and Feng, J. J. (2013). Sensitive and selective colorimetric detection of cadmium (II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole. Microchimica Acta, 180(11-12), 1051-1057. https://doi.org/10.1007/s00604-013-1030-7
  • Wang, X., Wei, Y., Wang, S. and Chen, L. (2015). Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 472, 57-62. http://www.researchgate.net/publication/273145180
  • Wuana, R. A., Okieimen, F. E. and Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7(3), 485-496. https://doi.org/10.1007/BF03326158
  • Yardımcı, B., Dondurmacıoğlu, F., Üzer, A., Hızal, J. and Apak, R. (2019). Monitoring Humic Acid Photodegradation by CUPRAC Colorimetric and HPLC Determination of Dihydroxybenzoate Isomers Produced From a Salicylate Probe. Analytical Letters, 52(17), 2710-2723. https://doi.org/10.1080/00032719.2019.1594868

Nanoparticle-based with surface plasmon resonance capability colorimetric sensors developed for the detection of some heavy metal ions using UV-Visible Spectrophotometer

Yıl 2021, Cilt: 2 Sayı: 1, 64 - 75, 29.01.2021

Öz

Especially, heavy metals such as Cd2+, Hg2+, Pb2+ and Cr3+ cause toxic effects even when taken in trace amounts. These heavy metals are inorganic pollutants and since they are not biodegradable like some organic pollutants, their amounts in nature gradually increase over the years and this situation significantly affects the health of living things. Heavy metal intake causes diseases such as memory loss, loss of appetite, neurological damage, skin diseases. In recent years, gold and silver nanoparticle based colorimetric sensors with surface plasmon resonance properties have been developed for qualitative and quantitative analysis specific to target heavy metal ions. The working principle of these types of nanosensors is caused by aggregation or disaggregation of the relevant nanoparticle in the presence of heavy metal ions, which causes color change in the UV-visible region and this color change is monitored by UV-Visible Spektrophotometer. UV-Vis. spectrophotometers are portable, fast, sensitive, selective and inexpensive devices and allow the development of colorimetric sensors. In this review, gold or silver nanoparticle based colorimetric sensors that enable the characterization of Cd2+, Hg2+, Pb2+ and Cr3+ heavy metal ions with UV-Visible spectrophotometer are included.

Kaynakça

  • Aktara, M. N., Das, S., Nayim, S., Sahoo, N. K., Beg, M., Jana, G. C., et al. (2019). A sensorial colorimetric detection method for Hg2+ and Cu2+ ions using single probe sensor based on 5-methyl-1, 3,4-thiadiazole-2-thiol stabilized gold nanoparticles and its application in real water sample analysis. Microchemical Journal, 147, 1163-1172. https://doi.org/10.1016/j.microc.2019.04.0
  • Aminu, A. and Oladepo, S. A. (2020). Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury (II) Ions. Arabian Journal for Science and Engineering, 1-11. https://doi.org/10.1007/s13369-020-05030-3
  • Balasurya, S., Syed, A., Thomas, A. M., Bahkali, A. H., Elgorban, A. M., Raju, L. L. and Khan, S. S. (2020). Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles. Journal of Molecular Liquids, 300, 112361. https://doi.org/10.1016/j.saa.2019.117712
  • Bhattacharjee, Y. and Chakraborty, A. (2014). Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg (II) detection in water with subnanomolar exactitude. ACS Sustainable Chemistry & Engineering, 2(9), 2149-2154. https://doi.org/10.1021/sc500339n
  • Chai, F., Wang, C., Wang, T., Li, L. and Su, Z. (2010). Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS applied materials & interfaces, 2(5), 1466-1470. https://doi.org/10.1021/am100107k
  • Davis, A. C., Calloway Jr., C. P. and Jones, B. T. (2007). Direct determination of cadmium in urine by tungsten-coil inductively coupled plasma atomic emission spectrometry using palladium as a permanent modifier. Talanta, 71(3), 1144–1149. https://doi.org/10.1016/j.talanta.2006.06.005
  • Du, J., Hu, X., Zhang, G., Wu, X. and Gong, D. (2018). Colorimetric detection of cadmium in water using L-cysteine functionalized gold–silver nanoparticles. Analytical Letters, 51(18), 2906-2919. https://doi.org/10.1080/00032719.2018.1455103
  • Garbarino, J. R., Hayes, H., Roth, D., Antweider, R., Brinton, T. I. and Taylor, H. (1995). Contaminants in the Mississippi River US Geological survey circular 1133. Virginia USA.
  • García Grajeda, B. A., Aguila, S. A., Peinado Guevara, H., Reynoso-Soto, E., Ochoa-Terán, A., Trujillo-Navarrete, B., et al. (2018). Colorimetric and rapid determination of Cr (III) ions in water samples using AuNPs modified with 11-mercaptoundecyl phosphonic acid: spectroscopic characterization and reaction mechanism. Inorganic and Nano-Metal Chemistry, 48(6), 275-285. https://doi.org/10.1080/24701556.2018.1503680
  • Huang, D., Liu, X., Lai, C., Qin, L., Zhang, C., Yi, H., et al. (2019). Colorimetric determination of mercury (II) using gold nanoparticles and double ligand exchange. Microchimica Acta, 186(1), 31. https://doi.org/10.1007/s00604-018-3126-6
  • Işıldak, Ö., Deligönül, N. and Özbek, O. (2019). A novel silver (I)-selective PVC membrane sensor and its potentiometric applications. Turkish Journal of Chemistry, 43(4), 1149-1158. https://doi.org/10.3906/kim-1812-29
  • Isildak, Ö. and Özbek, O. (2020). Silver (I)-selective PVC membrane potentiometric sensor based on 5, 10, 15, 20-tetra (4-pyridyl)-21H, 23H-porphine and potentiometric applications. Journal of Chemical Sciences, 132(1), 29. https://doi.org/10.1007/s12039-019-1734-2
  • Isildak, Ö. and Özbek, O. (2020). Application of potentiometric sensors in real samples. Critical Reviews in Analytical Chemistry, 1-14. https://doi.org/10.1080/10408347.2019.1711013
  • Isildak, Ö., Özbek, O. and Gürdere, M. B. (2020). Development of Chromium (III)-Selective Potentiometric Sensor by Using Synthesized Pyrazole Derivative as an Ionophore in PVC Matrix and Its Applications. Journal of Analysis and Testing, 4(4), 273-280. https://doi.org/10.1007/s41664-020-00147-8
  • Jabariyan, S. and Zanjanchi, M. A. (2019). Colorimetric detection of cadmium ions using modified silver nanoparticles. Applied Physics A, 125(12), 872. https://doi.org/10.1007/s00339-019-3167-7
  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. and Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009
  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. and Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050-1074. https://doi.org/10.3762/bjnano.9.98
  • Kadhim, M. A., Naji, A. A. S., Khaleefah, L. S. and Salman, H. N. (2020). Evaluation of Some Minerals Content of Drinking and River Water in Iraq by AAS Method. Indian Journal of Forensic Medicine & Toxicology, 14(3), 1334-1339. https://doi.org/10.37506/ijfmt.v14i3
  • Kataria, R., Sethuraman, K., Vashisht, D., Vashisht, A., Mehta, S. K.. and Gupta, A. (2019). Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchemical Journal, 148, 299-305. https://doi.org/10.1021/ac5008688
  • Kobylinska, N., Kostenko, L., Khainakov, S. and Garcia-Granda, S. (2020). Advanced core-shell EDTA-functionalized magnetite nanoparticles for rapid and efficient magnetic solid phase extraction of heavy metals from water samples prior to the multi-element determination by ICP-OES. Microchimica Acta, 187(5). https://doi.org/10.1007/s00604-020-04231-9
  • Kotalova, I., Calabkova, K., Drabinova, S. and Heviankova, S. (2020, January). Contribution to the study of selected heavy metals in urban wastewaters using ICP-MS method. In IOP Conference Series: Earth and Environmental Science (Vol. 444, No. 1, p. 012028). IOP Publishing.
  • LeFauve, M. K. and Connaughton, V. P. (2017). Developmental exposure to heavy metals alters visually-guided behaviors in zebrafish. Current zoology, 63(2), 221-227. https://doi.org/10.1093/cz/zox017
  • Liu, Y., Deng, Y., Dong, H., Liu, K.. and He, N. (2017). Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Science China Chemistry, 60(3), 329-337. https://doi.org/10.1007/s11426-016-0253-2
  • Megarajan, S., Kanth, K. R. and Anbazhagan, V. (2020). Highly selective rapid colorimetric sensing of Pb2+ ion in water samples and paint based on metal induced aggregation of N-decanoyltromethamine capped gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118-485. https://doi.org/10.1016/j.saa.2020.118485
  • Mehta, V. N., Rohit, J. V. and Kailasa, S. K. (2016). Functionalization of silver nanoparticles with 5-sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn 2+ and Cd 2+ ions. New Journal of Chemistry, 40(5), 4566-4574. https://doi.org/10.1039/C5NJ03454J
  • Mousapour, K., Hajizadeh, S. and Farhadi, K. (2020). Colorimetric speciation analysis of chromium using 2-thiobarbituric acid capped silver nanoparticles. Analytical Methods, 12(19), 2484-2490. https://doi.org/10.1039/D0AY00160K
  • Özbek, O., Isildak, Ö., Gürdere, M. B. and Berkel, C. (2020). Cadmium (II)-selective potentiometric sensor based on synthesised (E)-2-benzylidenehydrazinecarbothioamide for the determination of Cd2+ in different environmental samples. International Journal of Environmental Analytical Chemistry, 1-16. https://doi.org/10.1080/03067319.2020.1817427
  • Özbek, O., Isildak, Ö. and Berkel, C. (2020). The use of porphyrins in potentiometric sensors as ionophores. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1-9. https://doi.org/10.1007/s10847-020-01004-y
  • Özbek, O., Işıldak, Ö., Yiğit, K. M. and Çetin, A. Atık Su Analizlerinde Potansiyometrik Sensörlerin Kullanımı. Türk Fen Ve Sağlık Dergisi, 1(2), 70-78.
  • Papageorgiou, S. K., Katsaros, F. K., Kouvelos, E. P., Nolan, J. W., Le Deit, H. and Kanellopoulos, N. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 137(3), 1765-1772. https://doi.org/10.1016/j.jhazmat.2006.05.017
  • Pueyo, M., Rauret, G., Lück, D., Yli-Halla, M., Muntau, H., Quevauviller, P. and López-Sánchez, J. F. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3(2), 243-250. https://doi.org/10.1039/b010235k
  • Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J. and Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals, 21(3), 321-332. https://doi.org/10.1007/s10534-007-9121-8
  • Ratnarathorn, N., Chailapakul, O. and Dungchai, W. (2015). Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Talanta, 132, 613-618. https://doi.org/10.1016/j.talanta.2014.10.024
  • Roto, R., Mellisani, B., Kuncaka, A., Mudasir, M. and Suratman, A. (2019). Colorimetric sensing of Pb2+ ion by using ag nanoparticles in the presence of dithizone. Chemosensors, 7(3), 28. https://doi.org/10.3390/chemosensors7030028 Sabela, M., Balme, S., Bechelany, M., Janot, J. M. and Bisetty, K. (2017). A review of gold and silver nanoparticle‐based colorimetric sensing assays. Advanced Engineering Materials, 19(12), 1700270. https://doi.org/10.1002/adem.201700270
  • Shrivas, K., Sahu, S., Patra, G. K., Jaiswal, N. K. and Shankar, R. (2016). Localized surface plasmon resonance of silver nanoparticles for sensitive colorimetric detection of chromium in surface water, industrial waste water and vegetable samples. Analytical Methods, 8(9), 2088-2096. https://doi.org/10.1039/C5AY03120F
  • Shrivas, K., Sahu, B., Deb, M. K., Thakur, S. S., Sahu, S., Kurrey, R., et al. (2019). Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchemical Journal, 150, 104156. https://doi.org/ 10.1016/j.microc.2019.104156.
  • Valko, M. M. H. C. M., Morris, H. and Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current medicinal chemistry, 12(10), 1161-1208.
  • Wan, Z., Xu, Z. and Wang, J. (2006). Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry. Analyst, 131(1), 141-147. https://doi.org/10.1039/B511829H
  • Wang, A. J., Guo, H., Zhang, M., Zhou, D. L., Wang, R. Z. and Feng, J. J. (2013). Sensitive and selective colorimetric detection of cadmium (II) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole. Microchimica Acta, 180(11-12), 1051-1057. https://doi.org/10.1007/s00604-013-1030-7
  • Wang, X., Wei, Y., Wang, S. and Chen, L. (2015). Red-to-blue colorimetric detection of chromium via Cr (III)-citrate chelating based on Tween 20-stabilized gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 472, 57-62. http://www.researchgate.net/publication/273145180
  • Wuana, R. A., Okieimen, F. E. and Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science & Technology, 7(3), 485-496. https://doi.org/10.1007/BF03326158
  • Yardımcı, B., Dondurmacıoğlu, F., Üzer, A., Hızal, J. and Apak, R. (2019). Monitoring Humic Acid Photodegradation by CUPRAC Colorimetric and HPLC Determination of Dihydroxybenzoate Isomers Produced From a Salicylate Probe. Analytical Letters, 52(17), 2710-2723. https://doi.org/10.1080/00032719.2019.1594868
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Batuhan Yardımcı

Yayımlanma Tarihi 29 Ocak 2021
Gönderilme Tarihi 27 Kasım 2020
Kabul Tarihi 24 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 1

Kaynak Göster

APA Yardımcı, B. (2021). Nanoparticle-based with surface plasmon resonance capability colorimetric sensors developed for the detection of some heavy metal ions using UV-Visible Spectrophotometer. Turkish Journal of Science and Health, 2(1), 64-75.








Turkish Journal of Science and Health (TFSD) 

E-mail:  tfsdjournal@gmail.com

Creative Commons Lisansı

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

18106    18107    18238 18235 1839418234 1823618237    19024   18234   19690 19305215142164821682 21909  23284 30073

27460


25763