Research Article
BibTex RIS Cite
Year 2018, , 1656 - 1667, 12.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.364866

Abstract

References

  • 1] Hager, T. J., & Morawicki, R. (2013). Energy consumption during cooking in the residential sector of developed nations: A review. Food Policy, 40, 54-63.
  • [2] Toonen, H. M. (2009). Adapting to an innovation: Solar cooking in the urban households of Ouagadougou (Burkina Faso). Physics and Chemistry of the Earth, 34(1–2), 65–71.
  • [3] Stambouli, A. B. (2011). Promotion of renewable energies in Algeria: Strategies and perspectives. Renewable and Sustainable Energy Reviews, 15(2), 1169–1181.
  • [4] Purohit, I. (2010). Testing of solar cookers and evaluation of instrumentation error. Renewable Energy, 35(9), 2053–2064.
  • [5] Mullick, S. C., Kandpal, T. C., & Saxena, A. K. (1987). Thermal test procedure for box-type solar cookers. Solar Energy, 39(4), 353–360.
  • [6] Funk, P. A. (2000). Evaluating the international standard procedure for testing solar cookers and reporting performance. Solar Energy, 68(1), 1–7.
  • [7] Funk, P. A., & Larson, D. L. (1998). Parametric model of solar cooker performance. Solar Energy, 62(1), 63–68.
  • [8] Kerme, E. D., & Orfi, J. (2015). Exergy-Based Thermodynamic Aalysis of Solar Driven Organic Rankine Cycle. Journal of Thermal Engineering, 1(1), 192–202.
  • [9] N. Doseva, & D. Chakyrova. (2014). Energy And Exergy Analyses Of Cogeneration System With A Biogas Engine. In 14th SGEM GeoConference on Energy and Clean Technologies (Vol. 1, p. 173–180 pp).
  • [10] Dalkiliç, A. S., Çelen, A., Çebi, A., Taner, T., & Wongwises, S. (2017). Parametric Study Of Energy, Exergy And Thermoeconomic Analyses On A Vapor-Compression System Cascaded With Libr/Water And Nh 3/Water Absorption Cascade Refrigeration Cycles. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering, 18(1).
  • [11] Xu, C., Wang, Z., Li, X., & Sun, F. (2011). Energy and exergy analysis of solar power tower plants. In Applied Thermal Engineering (Vol. 31, pp. 3904–3913).
  • [12] Yettou, F., Azoui, B., Malek, A., Gama, A., & Panwar, N. L. (2014). Solar cooker realizations in actual use: An overview. Renewable and Sustainable Energy Reviews, 37, 288–306.
  • [13] Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
  • [14] IEA. World Energy Outlook, ed. Paris: IEA/OECD, 1998.
  • [15]Nandwani, S. S. (1996). Solar cookers—cheap technology with high ecological benefits. Ecological Economics, 17(2), 73-81.
  • [16]Hernández-Luna, G., & Huelsz, G. (2008). A solar oven for intertropical zones: Evaluation of the cooking process. Energy conversion and management, 49(12), 3622-3626.
  • [17]Nahar, N. M. (1998). Design, development and testing of a novel non‐tracking solar cooker. International Journal of Energy Research, 22(13), 1191-1198.
  • [18]Nahar, N. M. (2000). Solar Cooking-an Appropriate Technology for Development Countries. In World Renewable Energy Congress VI (pp. 2245-2248).
  • [19]Nahar, N. M. (2009). Design and development of a large size non-tracking solar cooker. Journal of engineering science and technology, 4(3), 264-271.
  • [20]Yettou, F., Azoui, B., Malek, A, Gama, A., Panwar, N.L. (2014). Estimation et cartographie des températures d’un cuiseur solaire boîte avec et sans réflecteur en Algérie. Rev. des Energies Renouvelables., SIENR’14 Ghardaïa, 11-18. [21]Yettou, F., Azoui, B., Malek, A., Panwar, N.L., Gama, A. (2015). Conférence sur le Génie Mécanique, Energétique et Matériaux (CMEME2015), Biskra, Algérie, December 7-10.
  • [22]Cuce, E., & Cuce, P. M. (2013). A comprehensive review on solar cookers. Applied Energy, 102, 1399–1421.
  • [23]Saxena, A., Pandey, S. P., & Srivastav, G. (2011). A thermodynamic review on solar box type cookers. Renewable and Sustainable Energy Reviews, 15(6), 3301-3318.
  • [24]Khan, B.H. Non-conventional energy resources, (2008). Tata McGraw Hill Publications: New Delhi, India.
  • [25]Kothari, D.P., Singal, K.C., Ranjan, R. (2008). Renewable energy resources and emerging technologies, Prentice-Hall: New Delhi, India.
  • [26]Lahkar, P. J., & Samdarshi, S. K. (2010). A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renewable and Sustainable Energy Reviews, 14(6), 1615-1621.
  • [27] Panwar, N. L., Kaushik, S. C., & Kothari, S. (2012). State of the art of solar cooking: An overview. Renewable and Sustainable Energy Reviews, 16(6), 3776-3785.
  • [28]Mirdha, U. S., & Dhariwal, S. R. (2008). Design optimization of solar cooker. Renewable energy, 33(3), 530-544.
  • [29]Anderson, T.; Duke, M.; Carson, J. (2009). The first international conference on applied energy, Hong Kong, China, January 5-7.
  • [30]Nahar, N. M., Marshall, R. H., & Brinkworth, B. J. (1994). Studies on a hot box solar cooker with transparent insulation materials. Energy conversion and Management, 35(9), 787-791.
  • [31]Mullick, S. C., Kandpal, T. C., & Kumar, S. (1997). Top heat-loss factor of double-glazed box-type solar cooker from indoor experiments. Energy, 22(6), 559-565. [32]Srinivasan Rao, K.V.N. (2007). Fifth international energy conversion engineering conference and exhibit, St. Louis, Missouri, USA, June 25-27.
  • [33]Mahavar, S., Sengar, N., Rajawat, P., Verma, M., & Dashora, P. (2012). Design development and performance studies of a novel single family solar cooker. Renewable energy, 47, 67-76.
  • [34]Mahavar, S., Rajawat, P., Marwal, V. K., Punia, R. C., & Dashora, P. (2013). Modeling and on-field testing of a Solar Rice Cooker. Energy, 49, 404-412.
  • [35]Kumar, N., Agravat, S., Chavda, T., & Mistry, H. N. (2008). Design and development of efficient multipurpose domestic solar cookers/dryers. Renewable Energy, 33(10), 2207-2211.
  • [36]Kumar, N., Chavda, T., & Mistry, H. N. (2010). A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system. Applied Energy, 87(2), 471-477.
  • [37]Farooqui, S. Z. (2015). An improved power free tracking system for box type solar cookers. Solar Energy, 120, 100-103.
  • [38]Yettou Gama, F. ., Azoui, B. ., Malek, A. ., Panwar, N. L. ., & Gama, A. . (2015). Energetic and exergetic evaluation of solar box cooker in Algerian climatic conditions. International Journal of Exergy, 16(3), 337–357.
  • [39]Gama, A., Larbes, C., Malek, A., Yettou, F., & Adouane, B. (2013). Design and realization of a novel sun tracking system with absorber displacement for parabolic trough collectors. Journal of Renewable and Sustainable Energy, 5(3).
  • [40]Arenas, J. M. (2007). Design, development and testing of a portable parabolic solar kitchen. Renewable Energy, 32(2), 257–266.
  • [41]Sharaf, E. (2002). A new design for an economical, highly efficient, conical solar cooker. Renewable Energy, 27(4), 599–619.
  • [42]Sonune, A. V., & Philip, S. K. (2003). Development of a domestic concentrating cooker. Renewable Energy, 28(8), 1225–1234.
  • [43]Al-Soud, M. S., Abdallah, E., Akayleh, A., Abdallah, S., & Hrayshat, E. S. (2010). A parabolic solar cooker with automatic two axes sun tracking system. Applied Energy, 87(2), 463-470.
  • [44]Abu-Malouh, R., Abdallah, S., & Muslih, I. M. (2011). Design, construction and operation of spherical solar cooker with automatic sun tracking system. Energy Conversion and Management, 52(1), 615-620.
  • [45]Valmiki, M. M., Li, P., Heyer, J., Morgan, M., Albinali, A., Alhamidi, K., & Wagoner, J. (2011). A novel application of a Fresnel lens for a solar stove and solar heating. Renewable Energy, 36(5), 1614-1620.
  • [46]Sosa-Montemayor, F., Jaramillo, O. A., & Del Rio, J. A. (2009). Thermodynamic analysis of a solar coffee maker. Energy Conversion and Management, 50(9), 2407-2412.
  • [47]Gallagher, A. (2011). A solar fryer. Solar energy, 85(3), 496-505.
  • [48] Badran, A. A., Yousef, I. A., Joudeh, N. K., Al Hamad, R., Halawa, H., & Hassouneh, H. K. (2010). Portable solar cooker and water heater. Energy Conversion and Management, 51(8), 1605-1609.
  • [49] Lecuona, A., Nogueira, J. I., Ventas, R., & Legrand, M. (2013). Solar cooker of the portable parabolic type incorporating heat storage based on PCM. Applied energy, 111, 1136-1146.
  • [50] Esen, M. (2004). Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Solar Energy, 76(6), 751-757.
  • [51] Hussein, H. M. S., El-Ghetany, H. H., & Nada, S. A. (2008). Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy conversion and management, 49(8), 2237-2246.
  • [52] Yettou, F., Azoui, B., & Malek, A. (2013, May). Determination of adjustment tracking time in two types of solar cookers by ray-tracing method. In Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on (pp. 822-827).
  • [53] Matlab/Simulink Tutorial, (2000). School of Electrical, Electronic and Computer Engineering, Version 7.10, 1st Edition.
  • [54] Yettou, F., Malek, A., Haddadi, M., & Gama, A. (2009). Etude comparative de deux modèles de calcul du rayonnement solaire par ciel clair en Algérie. Revue des Energies Renouvelables, 12(2), 331-346.
  • [55] SolidWorks, SolidWorks Corporation, 300 Baker Avenue, Concord, MA 01742. Available from: http://www.solidworks.com/.
  • [56] Lambda Research Corporation, USA, (2000). TracePro software for opto-mechanical modeling user manual release 6 revision 03, p. 2.7-2.13.
  • [57] Chong, K. K., Lim, C. Y., & Hiew, C. W. (2011). Cost-effective solar furnace system using fixed geometry Non-Imaging Focusing Heliostat and secondary parabolic concentrator. Renewable Energy, 36(5), 1595-1602.
  • [58] Surfer User’s guide,( 1999). 3ème edition, Golden Software Inc. [59] Hofierka, J.; Suri, M.; Šúri, M. In: Proc. Open source GIS-GRASS users Conf (2002). Trento, Italy, September 11-13.
  • [60] Gschwind, B., Ménard, L., Albuisson, M., & Wald, L. (2006). Converting a successful research project into a sustainable service: the case of the SoDa Web service. Environmental Modelling & Software, 21(11), 1555-1561.
  • [61] Gama, A., Yettou, F., Malek, A., Larbes, C., Azoui, B. (2010). In: 2nd International Conference on Nuclear and Renewable Energy Resources (NURER10), Ankara, Turkey.
  • [62] Capderou, M. (1987). Atlas Solaire de l’Algérie, Aspect Géométrique, Synthèse Géographique, Vol.1, T3, Office des Publications Universitaires, EPAU: Algérie.

RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA

Year 2018, , 1656 - 1667, 12.12.2017
https://doi.org/10.18186/journal-of-thermal-engineering.364866

Abstract

Limited fossil resources and environmental problems imply that development of solar thermal appliances will play major role in incoming years, especially to meeting domestic energy requirements. The cooking energy demand, which is the largest primary energy-consuming sector and, are continuously increasing. This research paper deal with the temperatures and efficiency mapping of a realized parabolic solar cooker tested in Saharan region of Ghardaîa (Algeria) climatic conditions. Using Black body temperature equation’s based on Stefan-Boltzmann law, maps for focal areas receiver temperatures of the cooker are obtained by converting obtained results from optical simulation to thermal values. Several maps are generated through present study for both summer and winter with clear and cloud skies. It was found that cooker temperature values obtained during experimentations and that estimated using the proposed approach has good agreement. The rate of using the cooker from Northern to Southern regions of the country was not identical. For cloudy skies, the major area of the country is favorable for the use of the cooker during winter months. For clear skies, the mapping results indicate that the realized cooker is efficient in all the country throughout the summer season with temperatures exceeding 110 °C. The use of the cooker will be reduced by going in South to North regions during the winter months, depending on the amount of solar radiations received.

References

  • 1] Hager, T. J., & Morawicki, R. (2013). Energy consumption during cooking in the residential sector of developed nations: A review. Food Policy, 40, 54-63.
  • [2] Toonen, H. M. (2009). Adapting to an innovation: Solar cooking in the urban households of Ouagadougou (Burkina Faso). Physics and Chemistry of the Earth, 34(1–2), 65–71.
  • [3] Stambouli, A. B. (2011). Promotion of renewable energies in Algeria: Strategies and perspectives. Renewable and Sustainable Energy Reviews, 15(2), 1169–1181.
  • [4] Purohit, I. (2010). Testing of solar cookers and evaluation of instrumentation error. Renewable Energy, 35(9), 2053–2064.
  • [5] Mullick, S. C., Kandpal, T. C., & Saxena, A. K. (1987). Thermal test procedure for box-type solar cookers. Solar Energy, 39(4), 353–360.
  • [6] Funk, P. A. (2000). Evaluating the international standard procedure for testing solar cookers and reporting performance. Solar Energy, 68(1), 1–7.
  • [7] Funk, P. A., & Larson, D. L. (1998). Parametric model of solar cooker performance. Solar Energy, 62(1), 63–68.
  • [8] Kerme, E. D., & Orfi, J. (2015). Exergy-Based Thermodynamic Aalysis of Solar Driven Organic Rankine Cycle. Journal of Thermal Engineering, 1(1), 192–202.
  • [9] N. Doseva, & D. Chakyrova. (2014). Energy And Exergy Analyses Of Cogeneration System With A Biogas Engine. In 14th SGEM GeoConference on Energy and Clean Technologies (Vol. 1, p. 173–180 pp).
  • [10] Dalkiliç, A. S., Çelen, A., Çebi, A., Taner, T., & Wongwises, S. (2017). Parametric Study Of Energy, Exergy And Thermoeconomic Analyses On A Vapor-Compression System Cascaded With Libr/Water And Nh 3/Water Absorption Cascade Refrigeration Cycles. Anadolu University of Sciences & Technology-A: Applied Sciences & Engineering, 18(1).
  • [11] Xu, C., Wang, Z., Li, X., & Sun, F. (2011). Energy and exergy analysis of solar power tower plants. In Applied Thermal Engineering (Vol. 31, pp. 3904–3913).
  • [12] Yettou, F., Azoui, B., Malek, A., Gama, A., & Panwar, N. L. (2014). Solar cooker realizations in actual use: An overview. Renewable and Sustainable Energy Reviews, 37, 288–306.
  • [13] Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524.
  • [14] IEA. World Energy Outlook, ed. Paris: IEA/OECD, 1998.
  • [15]Nandwani, S. S. (1996). Solar cookers—cheap technology with high ecological benefits. Ecological Economics, 17(2), 73-81.
  • [16]Hernández-Luna, G., & Huelsz, G. (2008). A solar oven for intertropical zones: Evaluation of the cooking process. Energy conversion and management, 49(12), 3622-3626.
  • [17]Nahar, N. M. (1998). Design, development and testing of a novel non‐tracking solar cooker. International Journal of Energy Research, 22(13), 1191-1198.
  • [18]Nahar, N. M. (2000). Solar Cooking-an Appropriate Technology for Development Countries. In World Renewable Energy Congress VI (pp. 2245-2248).
  • [19]Nahar, N. M. (2009). Design and development of a large size non-tracking solar cooker. Journal of engineering science and technology, 4(3), 264-271.
  • [20]Yettou, F., Azoui, B., Malek, A, Gama, A., Panwar, N.L. (2014). Estimation et cartographie des températures d’un cuiseur solaire boîte avec et sans réflecteur en Algérie. Rev. des Energies Renouvelables., SIENR’14 Ghardaïa, 11-18. [21]Yettou, F., Azoui, B., Malek, A., Panwar, N.L., Gama, A. (2015). Conférence sur le Génie Mécanique, Energétique et Matériaux (CMEME2015), Biskra, Algérie, December 7-10.
  • [22]Cuce, E., & Cuce, P. M. (2013). A comprehensive review on solar cookers. Applied Energy, 102, 1399–1421.
  • [23]Saxena, A., Pandey, S. P., & Srivastav, G. (2011). A thermodynamic review on solar box type cookers. Renewable and Sustainable Energy Reviews, 15(6), 3301-3318.
  • [24]Khan, B.H. Non-conventional energy resources, (2008). Tata McGraw Hill Publications: New Delhi, India.
  • [25]Kothari, D.P., Singal, K.C., Ranjan, R. (2008). Renewable energy resources and emerging technologies, Prentice-Hall: New Delhi, India.
  • [26]Lahkar, P. J., & Samdarshi, S. K. (2010). A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renewable and Sustainable Energy Reviews, 14(6), 1615-1621.
  • [27] Panwar, N. L., Kaushik, S. C., & Kothari, S. (2012). State of the art of solar cooking: An overview. Renewable and Sustainable Energy Reviews, 16(6), 3776-3785.
  • [28]Mirdha, U. S., & Dhariwal, S. R. (2008). Design optimization of solar cooker. Renewable energy, 33(3), 530-544.
  • [29]Anderson, T.; Duke, M.; Carson, J. (2009). The first international conference on applied energy, Hong Kong, China, January 5-7.
  • [30]Nahar, N. M., Marshall, R. H., & Brinkworth, B. J. (1994). Studies on a hot box solar cooker with transparent insulation materials. Energy conversion and Management, 35(9), 787-791.
  • [31]Mullick, S. C., Kandpal, T. C., & Kumar, S. (1997). Top heat-loss factor of double-glazed box-type solar cooker from indoor experiments. Energy, 22(6), 559-565. [32]Srinivasan Rao, K.V.N. (2007). Fifth international energy conversion engineering conference and exhibit, St. Louis, Missouri, USA, June 25-27.
  • [33]Mahavar, S., Sengar, N., Rajawat, P., Verma, M., & Dashora, P. (2012). Design development and performance studies of a novel single family solar cooker. Renewable energy, 47, 67-76.
  • [34]Mahavar, S., Rajawat, P., Marwal, V. K., Punia, R. C., & Dashora, P. (2013). Modeling and on-field testing of a Solar Rice Cooker. Energy, 49, 404-412.
  • [35]Kumar, N., Agravat, S., Chavda, T., & Mistry, H. N. (2008). Design and development of efficient multipurpose domestic solar cookers/dryers. Renewable Energy, 33(10), 2207-2211.
  • [36]Kumar, N., Chavda, T., & Mistry, H. N. (2010). A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system. Applied Energy, 87(2), 471-477.
  • [37]Farooqui, S. Z. (2015). An improved power free tracking system for box type solar cookers. Solar Energy, 120, 100-103.
  • [38]Yettou Gama, F. ., Azoui, B. ., Malek, A. ., Panwar, N. L. ., & Gama, A. . (2015). Energetic and exergetic evaluation of solar box cooker in Algerian climatic conditions. International Journal of Exergy, 16(3), 337–357.
  • [39]Gama, A., Larbes, C., Malek, A., Yettou, F., & Adouane, B. (2013). Design and realization of a novel sun tracking system with absorber displacement for parabolic trough collectors. Journal of Renewable and Sustainable Energy, 5(3).
  • [40]Arenas, J. M. (2007). Design, development and testing of a portable parabolic solar kitchen. Renewable Energy, 32(2), 257–266.
  • [41]Sharaf, E. (2002). A new design for an economical, highly efficient, conical solar cooker. Renewable Energy, 27(4), 599–619.
  • [42]Sonune, A. V., & Philip, S. K. (2003). Development of a domestic concentrating cooker. Renewable Energy, 28(8), 1225–1234.
  • [43]Al-Soud, M. S., Abdallah, E., Akayleh, A., Abdallah, S., & Hrayshat, E. S. (2010). A parabolic solar cooker with automatic two axes sun tracking system. Applied Energy, 87(2), 463-470.
  • [44]Abu-Malouh, R., Abdallah, S., & Muslih, I. M. (2011). Design, construction and operation of spherical solar cooker with automatic sun tracking system. Energy Conversion and Management, 52(1), 615-620.
  • [45]Valmiki, M. M., Li, P., Heyer, J., Morgan, M., Albinali, A., Alhamidi, K., & Wagoner, J. (2011). A novel application of a Fresnel lens for a solar stove and solar heating. Renewable Energy, 36(5), 1614-1620.
  • [46]Sosa-Montemayor, F., Jaramillo, O. A., & Del Rio, J. A. (2009). Thermodynamic analysis of a solar coffee maker. Energy Conversion and Management, 50(9), 2407-2412.
  • [47]Gallagher, A. (2011). A solar fryer. Solar energy, 85(3), 496-505.
  • [48] Badran, A. A., Yousef, I. A., Joudeh, N. K., Al Hamad, R., Halawa, H., & Hassouneh, H. K. (2010). Portable solar cooker and water heater. Energy Conversion and Management, 51(8), 1605-1609.
  • [49] Lecuona, A., Nogueira, J. I., Ventas, R., & Legrand, M. (2013). Solar cooker of the portable parabolic type incorporating heat storage based on PCM. Applied energy, 111, 1136-1146.
  • [50] Esen, M. (2004). Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Solar Energy, 76(6), 751-757.
  • [51] Hussein, H. M. S., El-Ghetany, H. H., & Nada, S. A. (2008). Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy conversion and management, 49(8), 2237-2246.
  • [52] Yettou, F., Azoui, B., & Malek, A. (2013, May). Determination of adjustment tracking time in two types of solar cookers by ray-tracing method. In Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on (pp. 822-827).
  • [53] Matlab/Simulink Tutorial, (2000). School of Electrical, Electronic and Computer Engineering, Version 7.10, 1st Edition.
  • [54] Yettou, F., Malek, A., Haddadi, M., & Gama, A. (2009). Etude comparative de deux modèles de calcul du rayonnement solaire par ciel clair en Algérie. Revue des Energies Renouvelables, 12(2), 331-346.
  • [55] SolidWorks, SolidWorks Corporation, 300 Baker Avenue, Concord, MA 01742. Available from: http://www.solidworks.com/.
  • [56] Lambda Research Corporation, USA, (2000). TracePro software for opto-mechanical modeling user manual release 6 revision 03, p. 2.7-2.13.
  • [57] Chong, K. K., Lim, C. Y., & Hiew, C. W. (2011). Cost-effective solar furnace system using fixed geometry Non-Imaging Focusing Heliostat and secondary parabolic concentrator. Renewable Energy, 36(5), 1595-1602.
  • [58] Surfer User’s guide,( 1999). 3ème edition, Golden Software Inc. [59] Hofierka, J.; Suri, M.; Šúri, M. In: Proc. Open source GIS-GRASS users Conf (2002). Trento, Italy, September 11-13.
  • [60] Gschwind, B., Ménard, L., Albuisson, M., & Wald, L. (2006). Converting a successful research project into a sustainable service: the case of the SoDa Web service. Environmental Modelling & Software, 21(11), 1555-1561.
  • [61] Gama, A., Yettou, F., Malek, A., Larbes, C., Azoui, B. (2010). In: 2nd International Conference on Nuclear and Renewable Energy Resources (NURER10), Ankara, Turkey.
  • [62] Capderou, M. (1987). Atlas Solaire de l’Algérie, Aspect Géométrique, Synthèse Géographique, Vol.1, T3, Office des Publications Universitaires, EPAU: Algérie.
There are 59 citations in total.

Details

Journal Section Articles
Authors

Fatiha Yettou This is me

Publication Date December 12, 2017
Submission Date June 16, 2016
Published in Issue Year 2018

Cite

APA Yettou, F. (2017). RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA. Journal of Thermal Engineering, 4(1), 1656-1667. https://doi.org/10.18186/journal-of-thermal-engineering.364866
AMA Yettou F. RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA. Journal of Thermal Engineering. December 2017;4(1):1656-1667. doi:10.18186/journal-of-thermal-engineering.364866
Chicago Yettou, Fatiha. “RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA”. Journal of Thermal Engineering 4, no. 1 (December 2017): 1656-67. https://doi.org/10.18186/journal-of-thermal-engineering.364866.
EndNote Yettou F (December 1, 2017) RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA. Journal of Thermal Engineering 4 1 1656–1667.
IEEE F. Yettou, “RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA”, Journal of Thermal Engineering, vol. 4, no. 1, pp. 1656–1667, 2017, doi: 10.18186/journal-of-thermal-engineering.364866.
ISNAD Yettou, Fatiha. “RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA”. Journal of Thermal Engineering 4/1 (December 2017), 1656-1667. https://doi.org/10.18186/journal-of-thermal-engineering.364866.
JAMA Yettou F. RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA. Journal of Thermal Engineering. 2017;4:1656–1667.
MLA Yettou, Fatiha. “RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA”. Journal of Thermal Engineering, vol. 4, no. 1, 2017, pp. 1656-67, doi:10.18186/journal-of-thermal-engineering.364866.
Vancouver Yettou F. RECEIVER TEMPERATURE MAPS OF PARABOLIC COLLECTOR USED FOR SOLAR FOOD COOKING APPLICATION IN ALGERIA. Journal of Thermal Engineering. 2017;4(1):1656-67.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering